Breaking News
May 27, 2018 - Tree nut consumption linked to improved type 2 diabetes health
May 27, 2018 - Income and education gap causes racial differences in health behaviors, study shows
May 27, 2018 - Even at ‘Safe’ Levels, Air Pollution Puts Seniors at Risk
May 27, 2018 - Obstructive sleep apnea linked to thinning of calvaria, skull base
May 27, 2018 - Epigem’s Managing Director sets the bar for life sciences industry at VentureFest
May 27, 2018 - CPAP may reduce resting heart rate in prediabetic patients
May 27, 2018 - Study reveals striking disparities in health care access and quality across most nations
May 27, 2018 - The Yogi masters were right—meditation and breathing exercises can sharpen your mind
May 27, 2018 - SLU researcher aims to find solutions for diabetes patients at risk of hypoglycemia
May 27, 2018 - Scientists uncover the cause of insulin resistance in obesity
May 27, 2018 - $2.3 million NIH grant to support new project on oxytocin neurons and social behavior
May 27, 2018 - Less Driving Tied to Lower Cardiovascular Disease Risk
May 27, 2018 - Genetics Home Reference: LMNA-related congenital muscular dystrophy
May 27, 2018 - Long-term psychological study confirms time is the best medicine against homesickness
May 27, 2018 - Study explores if CPAP treatment can improve sexual QOL for sleep apnea patients
May 27, 2018 - Study investigates role played by brain in prosocial behavior
May 27, 2018 - New Guidelines Mean 1 in 3 Adults May Need Blood Pressure Meds
May 27, 2018 - Cerebrospinal Fluid (CSF) Analysis: MedlinePlus Lab Test Information
May 27, 2018 - Kids in tough neighborhoods head to ER more often
May 27, 2018 - Exercise alters brain’s dopamine system to help treat addiction, study finds
May 27, 2018 - Sepsis patients treated and released from ED for outpatient follow-up experience good outcomes
May 27, 2018 - Initiative cuts overuse of tests, treatments for bronchiolitis
May 27, 2018 - Study links ‘sleep spindles’ to memory reactivation
May 27, 2018 - Scientists develop new method to speed up genome evolution of baker’s yeast
May 27, 2018 - Sunscreen pills are fake says FDA
May 27, 2018 - Study finds increasing wealth gap between households of seniors and families with children
May 27, 2018 - Link between tuberculosis and Parkinson’s disease discovered
May 27, 2018 - Doctors call on health authorities for permission to provide stroke patients with life-saving treatment
May 26, 2018 - Couples who eat seafood-rich diet tend to get pregnant faster
May 26, 2018 - NIH summit presents recommendations to accelerate treatment development for Alzheimer’s disease
May 26, 2018 - Medication-related harm found to be common among older adults, but preventable
May 26, 2018 - Lunaphore and Vitro announce partnership to develop ISH protocols for RNA, DNA targets
May 26, 2018 - Cryoablation Efficacious for Cancer Pain, Review Finds
May 26, 2018 - Link between IBD and Parkinson’s might allow doctors to slow down condition
May 26, 2018 - Study finds fewer than 5% of low-income, urban mothers use prenatal vitamins before pregnancy
May 26, 2018 - California hospitals urge moms to favor breast milk over formula
May 26, 2018 - Most concussion patients do not receive follow-up care after hospital discharge, says study
May 26, 2018 - Lifetime risks of developing Alzheimer’s dementia vary by age, gender
May 26, 2018 - Researchers find novel ways to improve participation in clinical research
May 26, 2018 - Researchers develop methods for measuring free-base nicotine levels in e-cigarettes
May 26, 2018 - AHA: Preterm Birth Could Warn of Mom’s Future Heart Risks
May 26, 2018 - Some calories more harmful than others
May 26, 2018 - Study links cell size with commitment to division
May 26, 2018 - Researchers develop new, rapid blood test to detect liver damage
May 26, 2018 - Researchers discover cascade of immune processes linked to poor outcomes in aggressive breast cancer
May 26, 2018 - New research will use mathematics to solve mysteries in cell biology
May 26, 2018 - Proposed National Resilience Strategy to reverse catastrophic increases in ‘deaths of despair’
May 26, 2018 - Mice remain slim on burger diet
May 26, 2018 - BMC receives $13.5 million award to test methods for delivering childhood anxiety treatment
May 26, 2018 - ‘Right to Try Act’ will not benefit terminally-ill patients
May 26, 2018 - Study reveals novel statistical algorithm to identify potential disease genes
May 26, 2018 - Two genes play vital roles in malignant brain cancer
May 26, 2018 - Study explores link between groundwater lithium and diagnoses of bipolar disorder, dementia
May 26, 2018 - Researchers reveal stimulatory effects of myelin on young neural cells
May 26, 2018 - Small part of cellular protein that helps form long-term memories also drives neurodegeneration
May 26, 2018 - Four-legged friends can have heart issues, too
May 26, 2018 - Scientists create small, self-contained spaces inside mammalian cells
May 26, 2018 - Better Social Support Network Protects Black Men Against HIV
May 26, 2018 - National Heart, Lung, and Blood Institute (NHLBI)
May 26, 2018 - Burnout, depression can affect ophthalmology residents, study finds
May 26, 2018 - Latinos and African Americans more likely to experience serious depression than Whites
May 26, 2018 - Data from past epidemic could help improve response to future Ebola outbreaks
May 26, 2018 - Researchers provide insight into how the memory molecule limits brain plasticity
May 26, 2018 - OSU biologist describes ‘restoration ecology’ approach toward patient health
May 26, 2018 - New approach to study brown fat could aid in finding treatments for obesity
May 26, 2018 - UCI Center on Stress & Health receives NIH funding to develop digital health interventions
May 26, 2018 - Could More Fish in the Diet Boost Sex Lives and Fertility?
May 26, 2018 - NTU Singapore and SERI invent new scope to diagnose glaucoma
May 26, 2018 - Cancer cells co-opt pain-sensing ‘neural channel’ to increase tolerance against oxidative stress
May 26, 2018 - Study uncovers why pesticide exposure increases Parkinson’s disease risk in some people
May 26, 2018 - Study finds link between lead exposure and fertility rates
May 26, 2018 - Causes and treatment of acute heart failure vary by region, registry shows
May 26, 2018 - Delivery of standardized diabetes care could help achieve equitable health outcomes for all patients
May 26, 2018 - FDA authorizes marketing of OsteoDetect software for detecting wrist fractures
May 26, 2018 - HSE experts suggest new way of looking at infantilism
May 26, 2018 - Children and adolescents growing up in extreme societal conditions more likely to resort to violence
May 26, 2018 - New study puts forth most comprehensive tree of life for malaria parasites
May 26, 2018 - UVA researchers establish new guidelines for explorers of the submicroscopic world inside us
May 26, 2018 - Princeton Instruments and C-SOPS announce collaboration on innovative pharmaceutical technology
May 26, 2018 - New research shows why babies need to move in the womb
A new collaborative approach to investigate what happens in the brain when it makes a decision

A new collaborative approach to investigate what happens in the brain when it makes a decision

image_pdfDownload PDFimage_print
Imagining the world from a mouse’s perspective is essential for International Brain Laboratory scientists when picking a lab task that mimics a real-world decision. Credit: Elena Nikanorovna, CC BY-ND

Decisions span a vast range of complexity. There are really simple ones: Do I want an apple or a piece of cake with my lunch? Then there are much more complicated ones: Which car should I buy, or which career should I choose?

Neuroscientists like me have identified some of the individual parts of the brain that contribute to making decisions like these. Different areas process sounds, sights or pertinent prior knowledge. But understanding how these individual players work together as a team is still a challenge, not only in understanding decision-making, but for the whole field of neuroscience.

Part of the reason is that until now, neuroscience has operated in a traditional science research model: Individual labs work on their own, usually focusing on one or a few brain areas. That makes it challenging for any researcher to interpret data collected by another lab, because we all have slight differences in how we run experiments.

Neuroscientists who study decision-making set up all kinds of different games for animals to play, for example, and we collect data on what goes on in the brain when the animal makes a move. When everyone has a different experimental setup and methodology, we can’t determine whether the results from another lab are a clue about something interesting that’s actually going on in the brain or merely a byproduct of equipment differences.

The BRAIN Initiative, which the Obama administration launched in 2013, started to encourage the kind of collaboration that neuroscience needs. I just think it hasn’t gone far enough. So I co-founded a project called the International Brain Laboratory – a virtual mega-laboratory composed of many labs at different institutions – to show that the proverb “alone we go fast, together we go far” holds true for neuroscience. The first question the collaboration is tackling focuses on decision-making by the brain.

The brain’s decision team

Individual neuroscience labs have already uncovered a lot about how particular brain areas contribute to decision-making.

Say you’re choosing between an apple or a piece of cake to go with lunch. First, you need to know that apples and cake are the two options. That requires action from brain areas that process sensory information – your eyes see the apple’s bright red skin, while your nose takes in the sweet smell of cake.

Those sensory areas often connect to what we call association areas. Researchers have traditionally thought they play a role in putting different pieces of information together. By collating information from the eyes, the ears and so on, the association areas may give a more coherent, big-picture view of what’s happening in the world.

And why choose one action over another? That’s a question for the brain’s reward circuitry, which is critical in weighing the value of different options. You know that the cake will taste sweetly delicious now, but you might regret it when you’re heading to the gym later.

Then, there’s the frontal cortex, which is believed to play a role in controlling voluntary action. Research suggests it’s involved in committing to a particular action once enough incoming information has arrived. It’s the part of the brain that might tell you the piece of cake smells so good that it’s worth all of the calories.

Understanding how these different brain areas typically work together to make decisions could help with understanding what happens in diseased brains. Patients with disorders such as autism, schizophrenia and Parkinson’s disease often use sensory information in an unusual way, especially if it’s complex and uncertain. Research on decision-making may also inform treatment of patients with other disorders, such as substance abuse and addiction. Indeed, addiction is perhaps a prime example of how decision-making can go very wrong.

A lab collaborative spread around the world

Right now, neuroscientists are taking lots of closeup snapshots of what happens in particular areas of the brain when it makes a decision. But they aren’t coordinating with each other much, so these closeup pieces don’t fit together to give us the big picture of decision-making that we need.

That’s why a team of us joined up to form the International Brain Laboratory. With support from the International Neuroinformatics Coordinating Facility, the Wellcome Trust, and the Simons Foundation (also a funder of The Conversation US), we aim to create that big picture by designing one large-scale experiment that uses the exact same approach to study many different brain areas. Because the brain is so complex, we need the expertise of many different labs that each specialize in particular brain areas. But we need them to coordinate and use the same approach so that we can put all of their different pieces of the picture together.

We’re bringing together a team of 21 scientists who will work very closely to understand how billions of neurons work together in a single brain to make decisions. About a dozen different labs will each do part of one big experiment by measuring neuron activity in animals engaged in exactly the same game. Our team members will record activity from hundreds of neurons in each animal’s brain. We’ll collect tens of thousands of neuronal recordings that we can analyze together.

Keep it simple

In real-world decisions, you’re combining lots of different pieces of information – your sensory signals, your internal knowledge about what’s rewarding, what’s risky. But implementing that in a laboratory context is pretty hard.

We’re hoping to recreate a mouse’s natural foraging experience. In real life, there are many different paths an animal can take as it navigates the world looking for something to eat. It wants to find food, because food is rewarding. It uses incoming sensory cues, like, “Oh, I see a cricket over there!” An animal might combine that with a memory of reward, like, “I know this area has lush berry bushes, I remember that from yesterday, so I’ll go there.” Or, “I know over here there was a cat last time, so I’d better avoid that area.”

At first pass, the setup we’re using for the International Brain Laboratory doesn’t look very natural at all. The mouse has a little device that it uses to report decisions – it’s actually a wheel from a Lego set. For example, it might learn that when it sees an image of a vertical grating and turns the wheel until the image is centered, it gets a reward. If you think about what foraging is – exploring the environment, trying to find rewards, making use of sensory signals and prior knowledge – this simple Lego wheel activity does capture its essence.

We really had to think about the trade-off between having a behavior that was complex enough to give us insight into interesting neural computations, and one that was simple enough that it could be implemented in the same way in many different experimental laboratories. The balance we struck was a decision-making task that starts simple and becomes more and more complex as an individual animal achieves different stages of training.

Even in the simplest, very earliest stage we’re looking at, where the animals are just making voluntary movements, they’re deciding when to make a movement to harvest a reward. I’m sure we can go much further, but even if that’s as far as we get, having neural measurements from all over the brain during a simple behavior like this will be very interesting. We don’t know how it happens in the brain that you decide when to take a particular action and how to execute that action. Having neural measurements from all over the brain of what happened just before the animal spontaneously decided to go and get a reward will be a huge step forward.


Explore further:
New research on how the brain makes preference-based decisions

Provided by:
The Conversation

Tagged with:

About author

Related Articles