Breaking News
October 18, 2018 - Hundreds of dietary supplements shown to contain unapproved drugs
October 18, 2018 - Active Pharmaceuticals ID’d in >700 Dietary Supplements
October 18, 2018 - Cell death protein also damps inflammation
October 18, 2018 - Health Highlights: Oct. 15, 2018
October 18, 2018 - Largest study of ‘post-treatment controllers’ reveals clues about HIV remission
October 18, 2018 - Bad Blood in Silicon Valley: A conversation with John Carreyrou
October 18, 2018 - ANTRUK’s Annual Lecture sends out message on shortage of funds for antibiotic research
October 18, 2018 - NAM special publication outlines steps to ensure interoperability of health care systems
October 18, 2018 - Novel method uses just a drop of blood to monitor effect of lung cancer therapy
October 18, 2018 - New blood test could spare cancer patients from unnecessary chemotherapy
October 18, 2018 - Training young researchers to work with data volumes arising in the health sector
October 18, 2018 - New Metrohm IC method is reliable and convenient to use for zinc oxide assay
October 18, 2018 - Global AIDS, TB fight needs more money: health fund
October 18, 2018 - Understanding the forces that cause sports concussions
October 18, 2018 - Research points to new target for treating periodontitis
October 18, 2018 - New tool improves assessment of postpartum depression symptoms
October 18, 2018 - From Biopsy to Diagnosis
October 18, 2018 - Sexual harassment and assault linked to worse physical/mental health among midlife women
October 18, 2018 - Stumped by medical school? A Q&A with a learning specialist
October 18, 2018 - Targeting immune checkpoints in microglia could reduce out-of-control neuroinflammation
October 18, 2018 - Autonomic nervous system directly controls stem cell proliferation, study shows
October 18, 2018 - FDA Approves Talzenna (talazoparib) for gBRCAm HER2-Negative Locally Advanced or Metastatic Breast Cancer
October 18, 2018 - Sleeping Beauty technique helps identify genes responsible for NAFLD-associated liver cancer
October 18, 2018 - Many U.S. adults confused about primary care, study shows
October 18, 2018 - UC researcher focuses on light-mediated therapies to target breast cancer
October 18, 2018 - With philanthropic gifts, Stanford poised to make major advances in neurosciences | News Center
October 18, 2018 - Mice study shows antibiotics are not always necessary to cure sepsis
October 18, 2018 - Researchers discover why heart contractions are weaker in individuals with HCM
October 18, 2018 - Participation in organized sport during childhood may have long-term skeletal benefits
October 18, 2018 - Probiotic/antibiotic combination could eradicate drug-resistant bacteria
October 17, 2018 - More Socioeconomic Challenges for Hispanic Women With HIV
October 17, 2018 - 49,XXXXY syndrome – Genetics Home Reference
October 17, 2018 - Scientists uncover possible new causes of Tourette syndrome
October 17, 2018 - Girl undergoes unusual heart surgery after compassionate-use exemption | News Center
October 17, 2018 - Health Issues That Are Sometimes Mistaken for Gluten Sensitivity
October 17, 2018 - Elective induction of labor at 39 weeks may be beneficial option for women and their babies
October 17, 2018 - New smart watch algorithms can accurately monitor wearers’ sleep patterns
October 17, 2018 - Researchers demonstrate epigenetic memory transmission via sperm
October 17, 2018 - FDA, DHS announce memorandum of agreement to address cybersecurity in medical devices
October 17, 2018 - Health Tip: Know the Risks of Chicken Pox
October 17, 2018 - Immunotherapy effective against hereditary melanoma
October 17, 2018 - Researchers reveal new mechanism for how animal cells stay intact | News Center
October 17, 2018 - Alzheimer's Goes Under the Cryo-Electron Microscope
October 17, 2018 - Medicare for all? CMS chief warns program has enough problems already
October 17, 2018 - Metrohm Raman introduces Mira P handheld Raman system
October 17, 2018 - Expanding the knowledge about hippocampus to better understand cognitive deficits in MS
October 17, 2018 - Study of Nigerian breast cancer patients reveals prevalence of aggressive molecular features
October 17, 2018 - Many healthy children may have metabolic risk factors, finds study
October 17, 2018 - A new antibiotic could be a better, faster treatment for tuberculosis
October 17, 2018 - “I will not become a Robot Doctor”: A medical student vows to practice compassion
October 17, 2018 - Study findings may explain sporadic outbreaks of C. difficile infections in hospitals
October 17, 2018 - Purdue researchers develop new chemical process to find better drug ‘fits’ for patients
October 17, 2018 - Yale researchers develop way to attack RNA with small-molecule drugs
October 17, 2018 - New pragmatic study launched to understand the effectiveness of new type 2 diabetes drug
October 17, 2018 - Alnylam Announces Plan to Initiate Rolling Submission of a New Drug Application and Pursue Full Approval for Givosiran
October 17, 2018 - Nine cases of polio-like illness suspected in children in illinois
October 17, 2018 - Eisai enters into agreement with Eurofarma for development and sales of lorcaserin in 17 countries
October 17, 2018 - Patients once thought incurable can benefit from high-dose radiation therapy
October 17, 2018 - Researchers awarded grant to advance testing of experimental heroin vaccine
October 17, 2018 - Researchers examine SSRI use during pregnancy and major gestational malformations
October 17, 2018 - FDA grants Rare Pediatric Disease Designation for Immusoft’s Iduronicrin genleukocel-T
October 17, 2018 - Reliable Respiratory announces acquisition of Attleboro Area Medical Equipment
October 17, 2018 - Study reveals link between childhood abuse and higher arthritis risk in adulthood
October 17, 2018 - Research shows people over 65 are not performing enough physical activity
October 17, 2018 - FDA Approves Liletta (levonorgestrel-releasing intrauterine system) 52 mg to Prevent Pregnancy for up to Five Years
October 17, 2018 - Weight gain after smoking cessation linked to increased short-term diabetes risk
October 17, 2018 - Researchers find opportunity to control salt-sensitive hypertension without exercising
October 17, 2018 - Women not warned about cancer associated with breast implants
October 17, 2018 - Metrohm offers robust handheld Raman analyzer for Defense and Security
October 17, 2018 - Modeling Non-Numerical Data in Systems Biology
October 17, 2018 - Research aims to address health disparities in African-American men
October 17, 2018 - Human and cattle decoys trap outdoor-biting mosquitoes in malaria endemic regions
October 17, 2018 - High Circulating Prolactin Level Inversely Linked to T2DM Risk
October 17, 2018 - Study finds gene variant predisposes people to both Type 2 diabetes and low body weight
October 17, 2018 - Metrohm software products make it easy to comply with ALOCA and ALCOA+ guidelines
October 17, 2018 - Network of doctors identify the cause of 31 new conditions
October 17, 2018 - Notable improvement in brain cancer survival among younger patients but not much for elderly
October 17, 2018 - Scientists shed light on roles of transcription factors, TP63 and SOX2, in squamous cell carcinoma
October 17, 2018 - Costs of Medicare Diabetes Prevention Program may be higher than expected reimbursement
October 17, 2018 - Misuse of prescription opioids or benzodiazepines associated with suicidal thoughts
A new collaborative approach to investigate what happens in the brain when it makes a decision

A new collaborative approach to investigate what happens in the brain when it makes a decision

image_pdfDownload PDFimage_print
Imagining the world from a mouse’s perspective is essential for International Brain Laboratory scientists when picking a lab task that mimics a real-world decision. Credit: Elena Nikanorovna, CC BY-ND

Decisions span a vast range of complexity. There are really simple ones: Do I want an apple or a piece of cake with my lunch? Then there are much more complicated ones: Which car should I buy, or which career should I choose?

Neuroscientists like me have identified some of the individual parts of the brain that contribute to making decisions like these. Different areas process sounds, sights or pertinent prior knowledge. But understanding how these individual players work together as a team is still a challenge, not only in understanding decision-making, but for the whole field of neuroscience.

Part of the reason is that until now, neuroscience has operated in a traditional science research model: Individual labs work on their own, usually focusing on one or a few brain areas. That makes it challenging for any researcher to interpret data collected by another lab, because we all have slight differences in how we run experiments.

Neuroscientists who study decision-making set up all kinds of different games for animals to play, for example, and we collect data on what goes on in the brain when the animal makes a move. When everyone has a different experimental setup and methodology, we can’t determine whether the results from another lab are a clue about something interesting that’s actually going on in the brain or merely a byproduct of equipment differences.

The BRAIN Initiative, which the Obama administration launched in 2013, started to encourage the kind of collaboration that neuroscience needs. I just think it hasn’t gone far enough. So I co-founded a project called the International Brain Laboratory – a virtual mega-laboratory composed of many labs at different institutions – to show that the proverb “alone we go fast, together we go far” holds true for neuroscience. The first question the collaboration is tackling focuses on decision-making by the brain.

The brain’s decision team

Individual neuroscience labs have already uncovered a lot about how particular brain areas contribute to decision-making.

Say you’re choosing between an apple or a piece of cake to go with lunch. First, you need to know that apples and cake are the two options. That requires action from brain areas that process sensory information – your eyes see the apple’s bright red skin, while your nose takes in the sweet smell of cake.

Those sensory areas often connect to what we call association areas. Researchers have traditionally thought they play a role in putting different pieces of information together. By collating information from the eyes, the ears and so on, the association areas may give a more coherent, big-picture view of what’s happening in the world.

And why choose one action over another? That’s a question for the brain’s reward circuitry, which is critical in weighing the value of different options. You know that the cake will taste sweetly delicious now, but you might regret it when you’re heading to the gym later.

Then, there’s the frontal cortex, which is believed to play a role in controlling voluntary action. Research suggests it’s involved in committing to a particular action once enough incoming information has arrived. It’s the part of the brain that might tell you the piece of cake smells so good that it’s worth all of the calories.

Understanding how these different brain areas typically work together to make decisions could help with understanding what happens in diseased brains. Patients with disorders such as autism, schizophrenia and Parkinson’s disease often use sensory information in an unusual way, especially if it’s complex and uncertain. Research on decision-making may also inform treatment of patients with other disorders, such as substance abuse and addiction. Indeed, addiction is perhaps a prime example of how decision-making can go very wrong.

A lab collaborative spread around the world

Right now, neuroscientists are taking lots of closeup snapshots of what happens in particular areas of the brain when it makes a decision. But they aren’t coordinating with each other much, so these closeup pieces don’t fit together to give us the big picture of decision-making that we need.

That’s why a team of us joined up to form the International Brain Laboratory. With support from the International Neuroinformatics Coordinating Facility, the Wellcome Trust, and the Simons Foundation (also a funder of The Conversation US), we aim to create that big picture by designing one large-scale experiment that uses the exact same approach to study many different brain areas. Because the brain is so complex, we need the expertise of many different labs that each specialize in particular brain areas. But we need them to coordinate and use the same approach so that we can put all of their different pieces of the picture together.

We’re bringing together a team of 21 scientists who will work very closely to understand how billions of neurons work together in a single brain to make decisions. About a dozen different labs will each do part of one big experiment by measuring neuron activity in animals engaged in exactly the same game. Our team members will record activity from hundreds of neurons in each animal’s brain. We’ll collect tens of thousands of neuronal recordings that we can analyze together.

Keep it simple

In real-world decisions, you’re combining lots of different pieces of information – your sensory signals, your internal knowledge about what’s rewarding, what’s risky. But implementing that in a laboratory context is pretty hard.

We’re hoping to recreate a mouse’s natural foraging experience. In real life, there are many different paths an animal can take as it navigates the world looking for something to eat. It wants to find food, because food is rewarding. It uses incoming sensory cues, like, “Oh, I see a cricket over there!” An animal might combine that with a memory of reward, like, “I know this area has lush berry bushes, I remember that from yesterday, so I’ll go there.” Or, “I know over here there was a cat last time, so I’d better avoid that area.”

At first pass, the setup we’re using for the International Brain Laboratory doesn’t look very natural at all. The mouse has a little device that it uses to report decisions – it’s actually a wheel from a Lego set. For example, it might learn that when it sees an image of a vertical grating and turns the wheel until the image is centered, it gets a reward. If you think about what foraging is – exploring the environment, trying to find rewards, making use of sensory signals and prior knowledge – this simple Lego wheel activity does capture its essence.

We really had to think about the trade-off between having a behavior that was complex enough to give us insight into interesting neural computations, and one that was simple enough that it could be implemented in the same way in many different experimental laboratories. The balance we struck was a decision-making task that starts simple and becomes more and more complex as an individual animal achieves different stages of training.

Even in the simplest, very earliest stage we’re looking at, where the animals are just making voluntary movements, they’re deciding when to make a movement to harvest a reward. I’m sure we can go much further, but even if that’s as far as we get, having neural measurements from all over the brain during a simple behavior like this will be very interesting. We don’t know how it happens in the brain that you decide when to take a particular action and how to execute that action. Having neural measurements from all over the brain of what happened just before the animal spontaneously decided to go and get a reward will be a huge step forward.


Explore further:
New research on how the brain makes preference-based decisions

Provided by:
The Conversation

Tagged with:

About author

Related Articles