Breaking News
December 17, 2017 - Teens Acting Badly? Smog Could Be to Blame
December 17, 2017 - FDA Says ‘Yes’ to Short-Acting Insulin Admelog
December 17, 2017 - Vaping popular among teens; opioid misuse at historic lows
December 17, 2017 - Lower Urinary Symptoms Occur in Almost All Patients with SSc
December 17, 2017 - Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)
December 16, 2017 - Butler Hospital launches international Alzheimer’s disease prevention study
December 16, 2017 - iMedicalApps: Virtual Reality Boosts Self-Confidence for Med Students
December 16, 2017 - Researchers validate five new genes responsible for Amyotrophic Lateral Sclerosis
December 16, 2017 - New genetic analysis of candidiasis reveals surprising fungal sex secrets
December 16, 2017 - New high precision machine-learning model could help accelerate drug discovery
December 16, 2017 - Groundbreaking gene therapy trial brings cure for hemophilia closer
December 16, 2017 - Racial Differences Seen in IgG4 Disease
December 16, 2017 - Treacher Collins Syndrome
December 16, 2017 - New approach to tracking how deadly ‘superbugs’ travel could slow their spread
December 16, 2017 - Muscle paralysis may promote breakdown of bones
December 16, 2017 - WSU scientists create injectable dye to track progression of diseases
December 16, 2017 - Kaiser Permanente delivers clot-busting drugs to stroke patients more than twice as fast as national rates
December 16, 2017 - Some Great Holiday Foods for Weight Loss
December 16, 2017 - Shared Decision-Making Strategies for Lung Ca Screening Get High Marks
December 16, 2017 - Lactic acid bacteria can protect against Influenza A virus, study finds
December 16, 2017 - Cancer immunotherapy’s effectiveness may depend on patient’s genetic makeup
December 16, 2017 - Researchers explore patient-doctor conversations, best practices linked to opioid tapering
December 16, 2017 - ‘Virtual child’ to help professionals learn key techniques to treat children with autism
December 16, 2017 - IU scientists discover way to make drug treatment more successful against malaria
December 16, 2017 - Prostate cancer researchers find significant disparities between two liquid biopsy providers
December 16, 2017 - ED-Diagnosed Lung Ca Patients Worse Off: Clin Onc News Report
December 16, 2017 - Calcium in Urine Test: MedlinePlus Lab Test Information
December 16, 2017 - Pregnancy-related conditions taken together leave moms—and dads—at risk
December 16, 2017 - Research uncovers mechanism implicated in defective function of tumor-associated dendritic cells
December 16, 2017 - OncoBreak: Stubborn Racial Disparities; Paid Medical Leave & Chemo; DIY Gene Tests
December 16, 2017 - Critical link between obesity and diabetes has been identified
December 16, 2017 - Transfusion dependence reduces access to high-quality end-of-life care for leukemia patients
December 16, 2017 - Porvair and Suzhou Tianlong Bio to develop epigenetic analysis technologies
December 16, 2017 - FDA Approves Ixifi (infliximab-qbtx), a Biosimilar to Remicade
December 16, 2017 - Morning Break: Trump to Get Check-Up; Cancerous Transplant; Death Knell for MIPS?
December 16, 2017 - First transcatheter implant for diastolic heart failure successful
December 16, 2017 - ‘Sushi-like’ nanodiscs provide structural snapshots of misfolding proteins
December 16, 2017 - Inherited gene variation may be to blame for poor survival of patients with early-onset breast cancer
December 16, 2017 - Sign-up deadline is Friday, but some people may get extra time
December 16, 2017 - Higher Booze Taxes Might Pay Off for Public Health
December 16, 2017 - Regular Activity in Midlife Spares Joints in Women
December 16, 2017 - Rain May Not Cause Achy Joints After All: MedlinePlus Health News
December 16, 2017 - MedDiet adherence doesn’t affect acute heart failure mortality
December 16, 2017 - HKBU experts develop new generation of smart anti-cancer drug molecules
December 16, 2017 - Chronic Kidney Disease Audit finds wide variations in coding of CKD patients in primary care
December 16, 2017 - Scientists use nanoparticles to fight Mucoviscidosis
December 16, 2017 - Increasing physical activity decreases risk of death from lymphoma
December 16, 2017 - Fear compromises the health, well-being of immigrant families, survey finds
December 16, 2017 - Rejected antibiotic candidate could be worth a second look, research finds
December 16, 2017 - Is Nation on the Right Track to Combat Opioid Crisis?
December 16, 2017 - Arthritis No Longer Just a Disease of the Old: MedlinePlus Health News
December 16, 2017 - Study reveals biology behind why muscle stem cells respond differently to aging or injury
December 16, 2017 - Family members without inherited mutation have increased risk of melanoma
December 16, 2017 - Researchers reveal previously unknown mechanism that inhibits cells’ ability to develop into tumors
December 16, 2017 - Studies highlight potential of fMRI applications to detect, treat epilepsy in children
December 16, 2017 - Active surveillance proposed as first-line approach to manage patients with low-risk PMC of the thyroid
December 16, 2017 - Patients’ life values affect their attendance at medical treatment for pelvic-floor dysfunction
December 16, 2017 - Experts consider hazards of antibiotic resistances to be high
December 16, 2017 - Study finds erectile dysfunction as risk factor for early cardiovascular disease
December 16, 2017 - Amber-tinted glasses may reduce insomnia severity
December 16, 2017 - Arthritis Drug Seen Lowering GvHD Risk
December 16, 2017 - Atoh1, a potential Achilles’ heel of Sonic Hedgehog medulloblastoma
December 15, 2017 - Cornell engineers develop new method to measure vital signs using radio waves
December 15, 2017 - Rutgers studies highlight need for salon clients, workers to protect themselves from health risks
December 15, 2017 - FDA Approves Nucala (mepolizumab) for Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)
December 15, 2017 - Morning Break: CVS Buying Aetna; Uterus Transplant Baby; Your Brain on Drugs, Redux
December 15, 2017 - Social phobia linked to autism and schizophrenia
December 15, 2017 - Timestrip technology helping to prevent missed vaccinations
December 15, 2017 - Researchers win NIH grants for Alzheimer’s research on Amish resilience and rapid onset
December 15, 2017 - Mitochondrial error-correction mechanism essential for energy production of cells
December 15, 2017 - New report reveals steep rise in lung disease admissions to emergency departments during winter
December 15, 2017 - Study finds social stigma as barrier to successful treatment of children with HIV in Ethiopia
December 15, 2017 - Health Tip: Keep Gift-Giving Stress Under Wraps
December 15, 2017 - Long Stoppage of Bisphosphonates Tied to More Fractures
December 15, 2017 - Triglycerides Test: MedlinePlus Lab Test Information
December 15, 2017 - Study shows interventions, though few, can be effective for students with high-functioning autism
December 15, 2017 - Higher blood sugar during first trimester of pregnancy increases child’s risk of congenital heart defect
December 15, 2017 - Study tests accuracy of laboratory-developed cancer tests and FDA-approved companion diagnostics
December 15, 2017 - Extracellular vesicles can be used to effectively delay progression of kidney damage
December 15, 2017 - Targeted lung cancer treatments may benefit smokers and non-smokers alike
A new collaborative approach to investigate what happens in the brain when it makes a decision

A new collaborative approach to investigate what happens in the brain when it makes a decision

image_pdfDownload PDFimage_print
Imagining the world from a mouse’s perspective is essential for International Brain Laboratory scientists when picking a lab task that mimics a real-world decision. Credit: Elena Nikanorovna, CC BY-ND

Decisions span a vast range of complexity. There are really simple ones: Do I want an apple or a piece of cake with my lunch? Then there are much more complicated ones: Which car should I buy, or which career should I choose?

Neuroscientists like me have identified some of the individual parts of the brain that contribute to making decisions like these. Different areas process sounds, sights or pertinent prior knowledge. But understanding how these individual players work together as a team is still a challenge, not only in understanding decision-making, but for the whole field of neuroscience.

Part of the reason is that until now, neuroscience has operated in a traditional science research model: Individual labs work on their own, usually focusing on one or a few brain areas. That makes it challenging for any researcher to interpret data collected by another lab, because we all have slight differences in how we run experiments.

Neuroscientists who study decision-making set up all kinds of different games for animals to play, for example, and we collect data on what goes on in the brain when the animal makes a move. When everyone has a different experimental setup and methodology, we can’t determine whether the results from another lab are a clue about something interesting that’s actually going on in the brain or merely a byproduct of equipment differences.

The BRAIN Initiative, which the Obama administration launched in 2013, started to encourage the kind of collaboration that neuroscience needs. I just think it hasn’t gone far enough. So I co-founded a project called the International Brain Laboratory – a virtual mega-laboratory composed of many labs at different institutions – to show that the proverb “alone we go fast, together we go far” holds true for neuroscience. The first question the collaboration is tackling focuses on decision-making by the brain.

The brain’s decision team

Individual neuroscience labs have already uncovered a lot about how particular brain areas contribute to decision-making.

Say you’re choosing between an apple or a piece of cake to go with lunch. First, you need to know that apples and cake are the two options. That requires action from brain areas that process sensory information – your eyes see the apple’s bright red skin, while your nose takes in the sweet smell of cake.

Those sensory areas often connect to what we call association areas. Researchers have traditionally thought they play a role in putting different pieces of information together. By collating information from the eyes, the ears and so on, the association areas may give a more coherent, big-picture view of what’s happening in the world.

And why choose one action over another? That’s a question for the brain’s reward circuitry, which is critical in weighing the value of different options. You know that the cake will taste sweetly delicious now, but you might regret it when you’re heading to the gym later.

Then, there’s the frontal cortex, which is believed to play a role in controlling voluntary action. Research suggests it’s involved in committing to a particular action once enough incoming information has arrived. It’s the part of the brain that might tell you the piece of cake smells so good that it’s worth all of the calories.

Understanding how these different brain areas typically work together to make decisions could help with understanding what happens in diseased brains. Patients with disorders such as autism, schizophrenia and Parkinson’s disease often use sensory information in an unusual way, especially if it’s complex and uncertain. Research on decision-making may also inform treatment of patients with other disorders, such as substance abuse and addiction. Indeed, addiction is perhaps a prime example of how decision-making can go very wrong.

A lab collaborative spread around the world

Right now, neuroscientists are taking lots of closeup snapshots of what happens in particular areas of the brain when it makes a decision. But they aren’t coordinating with each other much, so these closeup pieces don’t fit together to give us the big picture of decision-making that we need.

That’s why a team of us joined up to form the International Brain Laboratory. With support from the International Neuroinformatics Coordinating Facility, the Wellcome Trust, and the Simons Foundation (also a funder of The Conversation US), we aim to create that big picture by designing one large-scale experiment that uses the exact same approach to study many different brain areas. Because the brain is so complex, we need the expertise of many different labs that each specialize in particular brain areas. But we need them to coordinate and use the same approach so that we can put all of their different pieces of the picture together.

We’re bringing together a team of 21 scientists who will work very closely to understand how billions of neurons work together in a single brain to make decisions. About a dozen different labs will each do part of one big experiment by measuring neuron activity in animals engaged in exactly the same game. Our team members will record activity from hundreds of neurons in each animal’s brain. We’ll collect tens of thousands of neuronal recordings that we can analyze together.

Keep it simple

In real-world decisions, you’re combining lots of different pieces of information – your sensory signals, your internal knowledge about what’s rewarding, what’s risky. But implementing that in a laboratory context is pretty hard.

We’re hoping to recreate a mouse’s natural foraging experience. In real life, there are many different paths an animal can take as it navigates the world looking for something to eat. It wants to find food, because food is rewarding. It uses incoming sensory cues, like, “Oh, I see a cricket over there!” An animal might combine that with a memory of reward, like, “I know this area has lush berry bushes, I remember that from yesterday, so I’ll go there.” Or, “I know over here there was a cat last time, so I’d better avoid that area.”

At first pass, the setup we’re using for the International Brain Laboratory doesn’t look very natural at all. The mouse has a little device that it uses to report decisions – it’s actually a wheel from a Lego set. For example, it might learn that when it sees an image of a vertical grating and turns the wheel until the image is centered, it gets a reward. If you think about what foraging is – exploring the environment, trying to find rewards, making use of sensory signals and prior knowledge – this simple Lego wheel activity does capture its essence.

We really had to think about the trade-off between having a behavior that was complex enough to give us insight into interesting neural computations, and one that was simple enough that it could be implemented in the same way in many different experimental laboratories. The balance we struck was a decision-making task that starts simple and becomes more and more complex as an individual animal achieves different stages of training.

Even in the simplest, very earliest stage we’re looking at, where the animals are just making voluntary movements, they’re deciding when to make a movement to harvest a reward. I’m sure we can go much further, but even if that’s as far as we get, having neural measurements from all over the brain during a simple behavior like this will be very interesting. We don’t know how it happens in the brain that you decide when to take a particular action and how to execute that action. Having neural measurements from all over the brain of what happened just before the animal spontaneously decided to go and get a reward will be a huge step forward.


Explore further:
New research on how the brain makes preference-based decisions

Provided by:
The Conversation

Tagged with:

About author

Related Articles