Breaking News
February 19, 2018 - FDA Approves First Blood Test to Detect Concussions
February 19, 2018 - Survival Bump in Bladder Cancer with Keytruda
February 18, 2018 - Scientists describe the mechanism of heart regeneration in the zebrafish
February 18, 2018 - Scientists uncover the structure of microtubule motor proteins
February 18, 2018 - Light-activated cancer drugs without toxic side effects are closer to becoming reality
February 18, 2018 - Pioneering research could provide novel insight into how genomic information is read
February 18, 2018 - Pearls From: David Putrino, PhD
February 18, 2018 - Researchers uncover how cancer stem cells drive triple-negative breast cancer
February 18, 2018 - Morning Break: Anti-Anti-Vaxxers; Private Piercings Prohibited; A Case for Pelvic Massage
February 18, 2018 - Lower-dose radiation effective, safe for HPV+ head and neck cancer after induction chemo
February 18, 2018 - Specialist residential service for adults with autism opens in Swansea
February 18, 2018 - FDA Moves to Limit Loperamide Doses per Package
February 18, 2018 - Alcohol use disorder – Genetics Home Reference
February 18, 2018 - Autism might be better detected using new two-minute questionnaire
February 18, 2018 - Hand hygiene-intervention practices may reduce risk of infection among nursing home patients
February 18, 2018 - Researchers develop most sophisticated mini-livers to date
February 18, 2018 - Obamacare Helped More Young Women Get Prenatal Care: Study
February 18, 2018 - School-Based Program Fails to Dent Kids’ Obesity
February 18, 2018 - Research compares neural activity in children with and without autism spectrum disorder
February 18, 2018 - Poor fitness levels increase the risk dementia, concludes study
February 18, 2018 - Risk Score May Reveal if Kids are Victims of Ill-Treatment
February 18, 2018 - Adding Folic Acid to Corn Masa Flour May Prevent Birth Defects
February 18, 2018 - Acute treatment suppresses posttraumatic arthritis in ankle injury
February 18, 2018 - A Role for Budesonide in Autoimmune Hepatitis?
February 18, 2018 - Lupus patients exhibit altered cell proteins, a discovery with potential implications for diagnostics
February 18, 2018 - Muscle plays vital role in regulating heat loss from the hands
February 18, 2018 - High-tech brain scans can provide new way to define intelligence
February 18, 2018 - Study reveals the association between ultra-processed foods and cancer
February 18, 2018 - Prescription Opioid Use Tied to Higher Pneumonia Risk
February 18, 2018 - A non-invasive method to detect Alzheimer’s disease
February 18, 2018 - Deletion of specific enzyme leads to improvement in memory and cognitive functions
February 18, 2018 - Amyloid protein may be transmitted through neurosurgical instruments, study suggests
February 18, 2018 - Electric brain signals of males and females show differences
February 18, 2018 - American Heart Association commends McDonald’s for offering healthier menu in kids’ meals
February 18, 2018 - Parents Find Kids’ Weight Report Cards Hard to Swallow
February 18, 2018 - Does a Financial Conflict of Interest Ever Expire?
February 18, 2018 - Exercise can improve Alzheimer’s symptoms
February 18, 2018 - Scientists develop green chemistry method to improve pharmaceutical manufacturing efficiency
February 17, 2018 - ‘A Time Clock to a Tissue Clock’ for Acute Stroke Care
February 17, 2018 - Cancer Care Gets Personal | NIH News in Health
February 17, 2018 - Do more youth use or do youth use more?
February 17, 2018 - Eating faster linked to obesity
February 17, 2018 - Who’s Still Smoking? ACS Report Highlights Most Vulnerable Adults
February 17, 2018 - Study of smoking and genetics illuminates complexities of blood pressure
February 17, 2018 - Study reveals new link between bone cells and blood glucose level
February 17, 2018 - Children with reading challenges may have lower than expected binocular vision test results
February 17, 2018 - Mass Shootings Trigger Change for Emergency Medicine
February 17, 2018 - ECMO helps revive woman thought to be drowned
February 17, 2018 - Learning stress-reducing techniques may benefit people with epilepsy
February 17, 2018 - Shedding Pounds Before Weight-Loss Surgery a Smart Move
February 17, 2018 - FDA Approves New Cystic Fibrosis Drug Combo
February 17, 2018 - Augmented Reality helps surgeons to ‘see through’ tissue and reconnect blood vessels
February 17, 2018 - Emotional state affects operation of the entire brain instead of being restricted to specific regions
February 17, 2018 - Apalutamide Slows Metastasis in Prostate Cancer
February 17, 2018 - Kids’ well visits linked to lower appendicitis complications
February 17, 2018 - New NK cell-based immunotherapy effective against several types of leukemia
February 17, 2018 - Producing Super-Swelled Lyotropic Crystals for Drug Development
February 17, 2018 - Pfizer Receives Breakthrough Therapy Designation from FDA for PF-04965842, an oral JAK1 Inhibitor, for the Treatment of Patients with Moderate-to-Severe Atopic Dermatitis
February 17, 2018 - Molecular Imaging Flags Risk of AAA Rupture
February 17, 2018 - Researchers identify risk factors for sleep apnea during pregnancy
February 17, 2018 - More work required to find the right drug dosage for pediatric patients
February 17, 2018 - Factors ID’d That Predict RA Remission with Etanercept
February 17, 2018 - A handout or a hand up? How we judge others guides how we help others
February 17, 2018 - ACR receives grant to focus on projects that reduce health disparities
February 17, 2018 - Pimavanserin Might Be Safer Alternative to Ease Dementia Psychosis
February 17, 2018 - Risks of Lung Screening Seen Outweighing Benefits in Many with Smoking History
February 17, 2018 - The impact of Hurricane Harvey on pregnant moms
February 17, 2018 - Gene editing tool used to detect cancer
February 17, 2018 - Researchers detail molecular atlas of cells that form brain’s blood vessels
February 17, 2018 - TUM scientists observe formation of myelin sheaths around nerve fibers
February 17, 2018 - Worst Flu Season Yet? | Medpage Today
February 17, 2018 - Finding the root cause of bronchiolitis symptoms
February 17, 2018 - Climbing stairs reduces hypertension and strengthens muscles
February 17, 2018 - Nature paper unveils bacterial division
February 16, 2018 - Postoperative pain control following extensive pelvic exenteration
February 16, 2018 - Daré Bioscience, Inc. Enters into License and Collaboration Agreement for a Product with the Potential to Receive the First FDA Approval for Female Sexual Arousal Disorder
February 16, 2018 - Havana Embassy Staff: ‘Concussion Without Concussion’?
February 16, 2018 - Family impact of congenital Zika syndrome likely to last a lifetime
February 16, 2018 - STI Prevention Helped By Also Discussing Pot, Alcohol Use
February 16, 2018 - New method maps the dopamine system in Parkinson’s patients
A new collaborative approach to investigate what happens in the brain when it makes a decision

A new collaborative approach to investigate what happens in the brain when it makes a decision

image_pdfDownload PDFimage_print
Imagining the world from a mouse’s perspective is essential for International Brain Laboratory scientists when picking a lab task that mimics a real-world decision. Credit: Elena Nikanorovna, CC BY-ND

Decisions span a vast range of complexity. There are really simple ones: Do I want an apple or a piece of cake with my lunch? Then there are much more complicated ones: Which car should I buy, or which career should I choose?

Neuroscientists like me have identified some of the individual parts of the brain that contribute to making decisions like these. Different areas process sounds, sights or pertinent prior knowledge. But understanding how these individual players work together as a team is still a challenge, not only in understanding decision-making, but for the whole field of neuroscience.

Part of the reason is that until now, neuroscience has operated in a traditional science research model: Individual labs work on their own, usually focusing on one or a few brain areas. That makes it challenging for any researcher to interpret data collected by another lab, because we all have slight differences in how we run experiments.

Neuroscientists who study decision-making set up all kinds of different games for animals to play, for example, and we collect data on what goes on in the brain when the animal makes a move. When everyone has a different experimental setup and methodology, we can’t determine whether the results from another lab are a clue about something interesting that’s actually going on in the brain or merely a byproduct of equipment differences.

The BRAIN Initiative, which the Obama administration launched in 2013, started to encourage the kind of collaboration that neuroscience needs. I just think it hasn’t gone far enough. So I co-founded a project called the International Brain Laboratory – a virtual mega-laboratory composed of many labs at different institutions – to show that the proverb “alone we go fast, together we go far” holds true for neuroscience. The first question the collaboration is tackling focuses on decision-making by the brain.

The brain’s decision team

Individual neuroscience labs have already uncovered a lot about how particular brain areas contribute to decision-making.

Say you’re choosing between an apple or a piece of cake to go with lunch. First, you need to know that apples and cake are the two options. That requires action from brain areas that process sensory information – your eyes see the apple’s bright red skin, while your nose takes in the sweet smell of cake.

Those sensory areas often connect to what we call association areas. Researchers have traditionally thought they play a role in putting different pieces of information together. By collating information from the eyes, the ears and so on, the association areas may give a more coherent, big-picture view of what’s happening in the world.

And why choose one action over another? That’s a question for the brain’s reward circuitry, which is critical in weighing the value of different options. You know that the cake will taste sweetly delicious now, but you might regret it when you’re heading to the gym later.

Then, there’s the frontal cortex, which is believed to play a role in controlling voluntary action. Research suggests it’s involved in committing to a particular action once enough incoming information has arrived. It’s the part of the brain that might tell you the piece of cake smells so good that it’s worth all of the calories.

Understanding how these different brain areas typically work together to make decisions could help with understanding what happens in diseased brains. Patients with disorders such as autism, schizophrenia and Parkinson’s disease often use sensory information in an unusual way, especially if it’s complex and uncertain. Research on decision-making may also inform treatment of patients with other disorders, such as substance abuse and addiction. Indeed, addiction is perhaps a prime example of how decision-making can go very wrong.

A lab collaborative spread around the world

Right now, neuroscientists are taking lots of closeup snapshots of what happens in particular areas of the brain when it makes a decision. But they aren’t coordinating with each other much, so these closeup pieces don’t fit together to give us the big picture of decision-making that we need.

That’s why a team of us joined up to form the International Brain Laboratory. With support from the International Neuroinformatics Coordinating Facility, the Wellcome Trust, and the Simons Foundation (also a funder of The Conversation US), we aim to create that big picture by designing one large-scale experiment that uses the exact same approach to study many different brain areas. Because the brain is so complex, we need the expertise of many different labs that each specialize in particular brain areas. But we need them to coordinate and use the same approach so that we can put all of their different pieces of the picture together.

We’re bringing together a team of 21 scientists who will work very closely to understand how billions of neurons work together in a single brain to make decisions. About a dozen different labs will each do part of one big experiment by measuring neuron activity in animals engaged in exactly the same game. Our team members will record activity from hundreds of neurons in each animal’s brain. We’ll collect tens of thousands of neuronal recordings that we can analyze together.

Keep it simple

In real-world decisions, you’re combining lots of different pieces of information – your sensory signals, your internal knowledge about what’s rewarding, what’s risky. But implementing that in a laboratory context is pretty hard.

We’re hoping to recreate a mouse’s natural foraging experience. In real life, there are many different paths an animal can take as it navigates the world looking for something to eat. It wants to find food, because food is rewarding. It uses incoming sensory cues, like, “Oh, I see a cricket over there!” An animal might combine that with a memory of reward, like, “I know this area has lush berry bushes, I remember that from yesterday, so I’ll go there.” Or, “I know over here there was a cat last time, so I’d better avoid that area.”

At first pass, the setup we’re using for the International Brain Laboratory doesn’t look very natural at all. The mouse has a little device that it uses to report decisions – it’s actually a wheel from a Lego set. For example, it might learn that when it sees an image of a vertical grating and turns the wheel until the image is centered, it gets a reward. If you think about what foraging is – exploring the environment, trying to find rewards, making use of sensory signals and prior knowledge – this simple Lego wheel activity does capture its essence.

We really had to think about the trade-off between having a behavior that was complex enough to give us insight into interesting neural computations, and one that was simple enough that it could be implemented in the same way in many different experimental laboratories. The balance we struck was a decision-making task that starts simple and becomes more and more complex as an individual animal achieves different stages of training.

Even in the simplest, very earliest stage we’re looking at, where the animals are just making voluntary movements, they’re deciding when to make a movement to harvest a reward. I’m sure we can go much further, but even if that’s as far as we get, having neural measurements from all over the brain during a simple behavior like this will be very interesting. We don’t know how it happens in the brain that you decide when to take a particular action and how to execute that action. Having neural measurements from all over the brain of what happened just before the animal spontaneously decided to go and get a reward will be a huge step forward.


Explore further:
New research on how the brain makes preference-based decisions

Provided by:
The Conversation

Tagged with:

About author

Related Articles