Breaking News
December 15, 2018 - Young people suffering chronic pain battle isolation and stigma as they struggle to forge their identities
December 15, 2018 - Lifespan extension at low temperatures depends on individual’s genes, study shows
December 15, 2018 - New ingestible capsule can be controlled using Bluetooth wireless technology
December 15, 2018 - Researchers uncover microRNAs involved in the control of social behavior
December 15, 2018 - Research offers hope for patients with serious bone marrow cancer
December 15, 2018 - Link between poverty and obesity is only about 30 years old, study shows
December 15, 2018 - Mass spectrometry throws light on old case of intentional heavy metal poisoning
December 15, 2018 - BeyondSpring Announces Phase 3 Study 105 of its Lead Asset Plinabulin for Chemotherapy-Induced Neutropenia Meets Primary Endpoint at Interim Analysis
December 15, 2018 - Study finds that in treating obesity, one size does not fit all
December 15, 2018 - Tenacity and flexibility help maintain psychological well-being, mobility in older people
December 15, 2018 - Study reveals role of brain mechanism in memory recall
December 15, 2018 - High levels of oxygen encourage the brain to remain in deep, restorative sleep
December 15, 2018 - Experimental HIV vaccine strategy works in non-human primates, research shows
December 15, 2018 - Genetically modified pigs could limit replication of classical swine fever virus, study shows
December 15, 2018 - FDA Approves Herzuma (trastuzumab-pkrb), a Biosimilar to Herceptin
December 15, 2018 - Cost and weight-loss potential matter most to bariatric surgery patients
December 15, 2018 - Cancer Research UK and AstraZeneca open new Functional Genomics Centre
December 15, 2018 - New research lays out potential path for treatment of Huntington’s disease
December 15, 2018 - Prestigious R&D 100 Award presented to Leica Microsystems
December 15, 2018 - Study shows septin proteins detect and kill gut pathogen, Shigella
December 15, 2018 - Study sheds new light on disease-spreading mosquitoes
December 15, 2018 - 2017 Saw Slowing in National Health Care Spending
December 15, 2018 - Monitoring movement reflects efficacy of mandibular splint
December 15, 2018 - Study supports BMI as useful tool for assessing obesity and health
December 15, 2018 - Self-guided, internet-based therapy platforms effectively reduce depression
December 15, 2018 - Organically farmed food has bigger climate impact than conventional food production
December 15, 2018 - Faster, cheaper test has potential to enhance prostate cancer evaluation
December 15, 2018 - Researchers study abnormal blood glucose levels of patients after hospital discharge
December 15, 2018 - Swedish scientists explore direct association of dementia and ischemic stroke deaths
December 15, 2018 - Study finds 117% increase in number of dementia sufferers in 26 years
December 15, 2018 - Eczema Can Drive People to Thoughts of Suicide: Study
December 15, 2018 - Link between neonatal vitamin D deficiency and schizophrenia confirmed
December 15, 2018 - Nurse denied life insurance because she carries naloxone
December 15, 2018 - Ritalin drug affects organization of pathways that build brain networks used in attention, learning
December 15, 2018 - Research pinpoints two proteins involved in creation of stem cells
December 15, 2018 - Gut bacteria may modify effectiveness of anti-diabetes drugs
December 15, 2018 - Early physical therapy associated with reduction in opioid use
December 15, 2018 - Breast cancer protection from pregnancy begins many decades later, study finds
December 15, 2018 - How often pregnant women follow food avoidance strategy to prevent allergy in offspring?
December 15, 2018 - Using machine learning to predict risk of developing life-threatening infections
December 15, 2018 - How imaginary friends could boost children’s development
December 15, 2018 - Folate deficiency creates more damaging chromosomal abnormalities than previously known
December 15, 2018 - Study provides new insights into molecular mechanisms underlying role of amyloid in Alzheimer’s disease
December 15, 2018 - For the asking, a check is in the mail to help pay for costly drugs
December 15, 2018 - UA scientists uncover biological processes leading to rare brain disorder in babies
December 15, 2018 - The largest database on industrial poisons
December 15, 2018 - ESMO Immuno-Oncology Congress showcases novel technologies set to benefit many cancer patients
December 15, 2018 - Ovid Therapeutics Announces Plans to Move into a Phase 3 Trial in Pediatric Patients Based on End-of-Phase 2 Meeting for OV101 in Angelman Syndrome
December 15, 2018 - Left ventricular noncompaction – Genetics Home Reference
December 15, 2018 - Children’s sleep not significantly affected by screen time, new study finds
December 15, 2018 - When should dementia patients stop driving? A new guidance for clinicians
December 15, 2018 - Researchers use INTEGRA’s VIAFLO 96/384 to streamline the experimental workflow
December 15, 2018 - Researchers discover protein involved in nematode stress response
December 15, 2018 - Cancer patients have greater risk of developing shingles, study shows
December 14, 2018 - UAlberta scientists identify biomarkers for detecting Alzheimer’s disease in saliva samples
December 14, 2018 - Study uncovers link between tube travel and spread of flu-like illnesses
December 14, 2018 - Caffeine plus another compound in coffee may fight Parkinson’s disease
December 14, 2018 - GW researchers review studies on treatments for prurigo nodularis
December 14, 2018 - Lack of peds preventive care ups unplanned hospital admissions
December 14, 2018 - Miscarriage: When Language Deepens Pain
December 14, 2018 - New method helps better understand pathological development of ALS
December 14, 2018 - Intellectually active lifestyle confers protection against neurodegeneration in Huntington’s patients
December 14, 2018 - Mammalian collagen nanofibrils become stronger and tougher with exercise
December 14, 2018 - Considerable Morbidity, Mortality Due to Animal Encounters
December 14, 2018 - Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson’s disease
December 14, 2018 - How early physical therapy can lessen the long-term need for opioids
December 14, 2018 - Depression, suicide rates highest in Mountain West states
December 14, 2018 - New model could cure the potential to underestimate how quickly diseases spread
December 14, 2018 - Exercise-induced hormone activates cells critical for bone remodeling in mice
December 14, 2018 - Researchers discover new mechanism behind spread of malignant pleural mesothelioma
December 14, 2018 - Health Tip: Celebrate a Healthier Holiday
December 14, 2018 - Scalpel-free surgery enhances quality of life for Parkinson’s patients, study finds
December 14, 2018 - Early physical therapy can reduce risk, amount of long-term opioid use | News Center
December 14, 2018 - Genetic marker, predictor of early relapse in common childhood cancer discovered
December 14, 2018 - Study could lead to a potential new way of treating sepsis
December 14, 2018 - New protein complex helps embryonic stem cells to maintain their indefinite potential
December 14, 2018 - Salk professor receives $1.8 million from NOMIS Foundation for research on mechanisms to promote health
December 14, 2018 - New discovery will improve the safety and predictability of CRISPR
December 14, 2018 - Geneticists discover how sex-linked disorders arise
December 14, 2018 - New method to visualize small-molecule interactions inside cells
Why Should We Weigh Every Protein in the Human Body?

Why Should We Weigh Every Protein in the Human Body?

image_pdfDownload PDFimage_print

An interview with Prof. Neil Kelleher, conducted by Alina Shrourou, BSc

It has been announced that you will be doing a talk as part of the “Structural Mass Spectrometry and Top Down Proteomics of Proteoforms and Their Complexes” symposia at Pittcon 2018. Please can you outline the project you are working on and will be discussing during your talk?

I’m Neil Kelleher and I am a Professor at Northwestern University. I’m giving an award talk at Pittcon 2018 in Orlando, Florida, as a recipient of Pittcon’s “Advances in Measurement Science Lectureship Awards”. This is due to my commitment to help form a community called The Consortium for Top-Down Proteomics.

© Raimundo79/Shutterstock.com

Our mission is to advance the measurement of human proteins with greater precision, to bring to the world the benefits of absolute molecular specificity when it comes to interrogating proteins at the molecular level. Hence, the full expression of this vision is to sequence the human proteome, and that’s what the Cell-Based Human Proteome Project is about. It brings us into a really interesting, open, and provocative conversation about science and technology.

The Cell-Based Human Proteome Project is something I proposed in 2012 and have been working on since then. The proposal was to map 250,000 proteoforms in 4,000 different cell types.

We have already determined the human genome. What is the importance in understanding proteins at the same level?

The genome is the map. Now 20 years later, we know there’s about 20,000 human genes. They create millions of different molecules and all the different cell types.

When you start talking about disease mechanisms, the precision with which we understand the biology driving disease and the ability to detect and treat it has been categorized precisely to each disease, and this precision is left up to specific protein analysis.

Biologists would agree that proteins are the mediators of much of what we call a disease phenotype. For example, looking at the outward expression of big cancer cells growing in someone’s organs – that phenotype is a combination of the genes and the oncogenes driving the cancer, what type of cancer it is, how to defeat it and shrink the tumor – all of these things involve proteins which make up a specific disease phenotype for a particular individual. You must fully understand the proteins in order to understand and treat the disease and save that person.  

What is a proteoform and how are they used in the field of proteomics?

A proteoform is the exact molecular composition of a protein molecule, and it is the unit of currency that the proteomic community is beginning to measure and share. It can house within it a bunch of sources of variation that make biology so enigmatic and difficult to pin down.

Proteins vary due to the number of processes that can occur to them, including polymorphisms, mutations, alternative splicing, isoforms and post-translational modifications. One simple way to describe all of this variation is the term “proteoform”. Everybody in proteomics is picking up the word – it’s very much becoming less of just a “word” and more of a “movement” in proteomics.

How can a protein be measured to determine its proteoforms?

The measurement strategy goes right to the heart of measurement science, and we are advocating for a new platform to improve proteomics.

We embrace the idea that instead of inferring proteoforms from the bottom-up, we measure them directly, using top-down mass spectrometry. This is the idea of weighing the whole protein first and then degrading it once you have mapped what proteoforms exist directly at the proteoform level.

The measurement approach that you use really impacts how you view protein diversity. The world has largely been driven by bottom-up proteomics. Therefore it’s been enlightening to use a new approach in order to investigate what’s happening in the regulation of protein-based biology.

How is science being held back by not knowing all forms of a protein?

Basic biomedical research is all about increasing precision, about the molecules of life. As you have hypotheses about some mechanistic aspects of cell biology, by knowing the proteins precisely and having the reference catalog of human proteoforms, this reference would be as enabling in the long run, as a reference to human genome.

The other thing that you would get is more measurements per dollar. If you have the reference list of the different proteoforms and the cell sites, you are expanding the types reagents that you could create and buy. Economies of scale, volume and cost drops, would definitely follow this kind of project.

Overall, it’s just the efficiency of biomedical research now and finding protein-based markers of disease. Current process for biomedical research, such as drug development, are highly inefficient, and would become more efficient if we knew all of the possible proteoforms.

Please outline the information you will be presenting in your session titled “Mass Spectrometry” at Pittcon 2018.

It will be to review the Cell-Based Human Proteome Project, to frame it for those who don’t know about it, highlighting the vision of “A billion proteoforms at a dollar each”. I will then go much deeper into the nature of the project and the motivations for it. I will also discuss the kind of measurement science used in the project, top-down proteomics, with the art and science of measuring proteoforms becoming a major focal point.

Something that has happened this year that has de-risked the Cell-Based Human Proteome Project and made it much more feasible, is the Human Cell Atlas – a group funded by the Chan Zuckerberg Biohub, whose mission is to regularize and categorize all the types of human cells.

With this, I feel like the industry is turning in favor of this idea that we should map and sequence all the different proteins in all the different cell types. The problem was we didn’t have a map of what all the cell types were but that’s now being addressed. This will be my story to tell at Pittcon 2018.

 

At Pittcon 2018, there will be all the best vendors producing equipment for proteomics research. That includes not only mass spectrometry and chromatography, but also antibodies and other complementary technology that would be stimulated by the project.

How is Mass Spectrometry involved with weighing proteins in the Cell-Based Proteome project?

It’s hard to envision another technology besides mass spectrometry that can precisely measure proteins. To directly map and sequence proteoforms, you have to directly analyze the whole protein – which is only possible using whole protein mass spectrometry.

However, it is important to note that it is the style of performing mass spec and the way that samples are handled which makes it possible to sequence proteoforms. This method is called top-down mass spectrometry or top-down proteomics. That’s the only way we currently have to discover proteoforms. Once they’re known, you have all sorts of single-cell, single-molecule technology that could be used.

Please outline the top-down strategy for analyzing proteins.

It’s in the name – first you weigh the whole protein at what we call the MS1 level, then from there you measure its components, at the MS2 level.

I sometimes think of the word protein as fiction – if you have 10 different proteoforms that make it up, then what do you mean by the protein? That’s why we want to catalog those proteoforms precisely, so we know exactly what that protein is.

Once you have the protein, you must imagine spreading the components out. There are 10 signals, which all weigh differently or have different atom compositions. Then you would isolate one of them in the gas state, in the mass spectrometer. Following this, you can separate them in the condensed phase using chromatography or electrophoresis. There’s room for a lot of innovation there.

Once you have the proteome in its pure form, even if only for a microsecond inside of mass spectrometer, you then it fragment it into all of the pieces that serve as a fingerprint – the MS2 level. You can have hundreds of fragment ions that are produced from a proteoform, and that allows you to identify, which of the 20,300 human genes produced that proteoform and exactly what it is.

There are two modes of top-down, there’s denatured mode and native mode. The native, newer mode, allows good coverage of very high mass proteins and even whole protein complexes. Most of proteomics right now is denatured mode top-down, but I will argue at Pittcon that native mode has a lot of upsides, and that we should be developing more technologies for top-down proteomics discovery in native mode.

How many proteoforms have been discovered so far? Please provide an example of how these have advanced science.

Everyone thinks there are more proteoforms than there are. It is easy to think that, because of how many modifications can be made on proteins, the variety in mass, how it’s scaled (exponentially), and more. You create all these potential proteoforms in a computer but how much does biology actually make? What I’m trying to do is to catalog them and show that they can be mapped, even high-mass, highly-complicated proteins, and that they exist in a limited number of proteoforms.

There are a growing number of cases, but one particular example was found in heart disease and the protein AOC-III. In this protein there were four proteoforms. One of which was oscillated and correlated very closely to peoples HDLC level (the good cholesterol). It is from here that we are able to investigate further into whether specific proteoforms indicate risk – for example, someone’s risk of heart attack? Although more research is needed here to take the next step, the basic assertion that proteoform mapping and sequencing will lead to deep functional insight, is proving to be true.

It is in microbiology, where bacteria is easy to grow and experiment with, where top-down proteoforms have excelled in created clarity. There’s a case of mapping of 25 proteoforms in a bacteria, and only five of them had a certain post-translational modification, meaning that those proteoforms were in the membrane of the bacteria.

In another example, researchers investigated the bacteria that causes meningitis. The authors mapped 20-30 forms of proteins called pilin, and they had a distinctive post-translational modification on them. The more of that post-translational modification they had, the more infectives, and the more pathogenic, the more virulent the organism was. This gives us a huge insight into better understanding disease and therefore developing treatments.

What does the future hold for protein based drugs?

Protein-based drugs are one of the major driving markets that’s creating more interest in top-down method. For example, there’s a drug that treats multiple sclerosis and it’s a protein-based drug. They mapped 138 proteoforms of that drug as it aged on the shelf.

During drug development, it seems illogical to me to digest it into hundreds of pieces to then do your analysis, as in the bottom-up approach. I understand that was the only way we could do things previously, but there are many uncertainties which arise from this method, due to the effects of oxidation or deamidation. So then it makes you question, “Was it my method or was it the drug?”

For these reasons, I think that top-down has a huge potential for protein based drugs. If you want to know the precise molecular composition of a protein, the way to do it is top-down.

What is making researchers reluctant to adopting this method?

In the past five years, the industry and the state of technology has really changed. Previously, you had to have a custom solution to each individual research goal, however now there is a suitably available commercial solution.

Currently, the main reluctance towards top-down is due to the ease of bottom-up, as this is the method that people are used to performing. However, if only a minority of people are doing top-down, others don’t pay attention to it, and therefore it becomes difficult to reduce its practice and make it easier, so that other people adopt it.

Sometimes, I find advances in technology is like a see-saw. All the weight is on one side but as soon as you can see it lifting, at some point, there’ll be a change that’s more swift. At some point, there’ll be a critical mass on the other side of the seesaw and it will change towards top-down pretty quickly.

It is part of my goal to boost the awareness of top-down proteomics and the benefits it brings. I want to tell people that if you have the individual drugs that you want to characterize, individual proteins, it’s achievable through top-down proteomics.

How do you see the top-down approach developing the world of proteomics?

You have two sides to this. One extreme says that all proteomics by 2030, will be top-down. On the other side, you have people that don’t think top-down will never by capable to perform full, deep proteomics discovery mode and so bottom-up will just be the dominant approach.

I fall in the middle. The see-saw is currently at an equilibrium for me. Bottom-up is useful if you just want to profile the proteome. But if you want to get into regulatory switches, and you really want to be precise about which proteoform you’re dealing with, top-down has to be involved.

If you want to do bottom-up proteomics but you already know what proteoforms are there, and because you have a reference list, you can make much better use of bottom-up data. That’s why, with the Cell-Based Human Proteome Project, I see a much more complementary role than some. However, the top-down still has to yet get that moment where it’s equilibrated in. That will take some time, no doubt.

Where can readers find more information?

We published a paper as a consortium in 2013, and that paper now has over 300 citations. It can be found https://www.nature.com/articles/nmeth.2369  

You can also find more information on the Consortium for Top-Down Proteomics website: http://www.topdownproteomics.org/

For more information on the Human Proteome Project, you can also visit my website: http://www.kelleher.northwestern.edu/human-proteome-project/

About Neil L. Kelleher

Neil L. Kelleher, PhD is the Walter and Mary Glass Professor of Molecular Biosciences and Professor of Chemistry in the Weinberg College of Arts and Sciences. He also is director of the Proteomics Center of Excellence and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. His research is focused in the areas of top down proteomics, natural products discovery and cancer biology.

Dr Kelleher has been successful in driving both technology development and applications of very high performance mass spectrometry. He has over 300 publications, with an H-factor of 60. One example of his impact on technology is ProSight software, now used by over 1000 labs around the world.

Dr. Kelleher’s research has focused on combining proteomics and metabolomics in innovative ways to provide a deterministic platform to feed compounds from the natural world to pharmaceutical pipelines. Over the past decade, he has led the discovery of projects for over two dozen new natural products and their biosynthetic gene clusters.

Recently, Kelleher has worked with other co-founders of Microbial Pharmaceuticals to establish a new approach to study natural products, metabologenomics. He has also managed the launch of the leading search engine ProSight for proteomics data analysis.

His outstanding contributions to the fields of proteomics and natural products chemistry have been recognized by multiple awards, including the Biemann Medal from the American Society for Mass Spectrometry, the Pfizer Award in Enzyme Chemistry from the American Chemical Society, the Presidential Early Career Award in Science and Engineering, the Camille Dreyfus Teacher-Scholar Award, a Sloan Fellowship, a Packard Fellowship, and an NSF CAREER award.

Tagged with:

About author

Related Articles