Breaking News
February 17, 2019 - MUSC researchers discover new mechanism for a class of anti-cancer drugs
February 17, 2019 - HPV misconceptions are causing women to miss smear tests
February 17, 2019 - Sanofi and Regeneron Offer Praluent (alirocumab) at a New Reduced U.S. List Price
February 17, 2019 - Researchers say auditory testing can identify children for autism screening
February 17, 2019 - New method analyzes how single biological cells react to stressful situations
February 17, 2019 - WVU gynecologic oncologist investigates novel treatment for cervical and vaginal cancers
February 17, 2019 - ADHD diagnoses poorly documented
February 17, 2019 - Majority of gender minority youth do not identify with traditional sexual identity labels
February 17, 2019 - AbbVie, Teneobio enter into strategic transaction to develop potential treatment for multiple myeloma
February 17, 2019 - Lower Birth Weight May Up Risk for Psychiatric Disorders
February 17, 2019 - Scientists identify reversible molecular defect underlying rheumatoid arthritis
February 17, 2019 - Moffitt researchers shed light on how CAR T cells function mechanistically
February 16, 2019 - Female Anatomy May Play Big Role in Sperm’s Success
February 16, 2019 - BMI may mediate inverse link between fiber intake, knee OA
February 16, 2019 - Movement impairments in autism can be reversed through behavioral training
February 16, 2019 - Studies address racial disparities in postpartum period and cardiovascular health
February 16, 2019 - Scientists implicate hidden genes in the severity of autism symptoms
February 16, 2019 - Decreased deep sleep linked to early signs of Alzheimer’s disease
February 16, 2019 - Neuroscientists show how the brain responds to texture
February 16, 2019 - Gilead Announces Topline Data From Phase 3 STELLAR-4 Study of Selonsertib in Compensated Cirrhosis (F4) Due to Nonalcoholic Steatohepatitis (NASH)
February 16, 2019 - What Can I Do About Sweating? (for Teens)
February 16, 2019 - Companies navigate dementia conversations with older workers
February 16, 2019 - Newly developed stem cell technologies show promise for treating PD patients
February 16, 2019 - Collaborative material research could advance self-assembling nanomaterials
February 16, 2019 - Researchers take major step in creating technology that mimics the human brain
February 16, 2019 - Erasing memories associated with cocaine use reduces drug seeking behavior
February 16, 2019 - Artificial intelligence can accurately predict prognosis of ovarian cancer patients
February 16, 2019 - Racial disparities in cancer deaths on the decline for America
February 16, 2019 - FDA authorizes new interoperable insulin pump for children, adults with diabetes
February 16, 2019 - Coexisting Medical Conditions, Smoking Explain PTSD-CVD Link
February 16, 2019 - Skin Cancer Screening: MedlinePlus Lab Test Information
February 16, 2019 - ‘Happiness’ exercises can boost mood in those recovering from substance use disorder
February 16, 2019 - Cell manipulation could soon halt or reverse aging
February 16, 2019 - Pumped Breast Milk Falls Short of Breastfed Version
February 16, 2019 - Men’s porn habits could fuel partners’ eating disorders, study suggests
February 16, 2019 - Rapid progression of age-related diseases may result from formation of vicious cycles
February 16, 2019 - Immune checkpoint molecule protects against future development of cancer
February 16, 2019 - New method produces hydrogels that have properties similar to cells’ environment
February 16, 2019 - $4.1 million funding for heart research on Valentine’s Day
February 16, 2019 - General anesthesia in early infancy unlikely to have lasting effects on developing brains
February 16, 2019 - New breakthroughs for muscular dystrophy research
February 16, 2019 - First Opinion: Embryo editing for higher IQ is a fantasy. Embryo profiling for it is almost here
February 16, 2019 - Vapers develop cancer-related gene deregulation as cigarette smokers
February 16, 2019 - Bringing Antimicrobial Susceptibility Testing (AST) to the Community
February 16, 2019 - Decolonization protocol after hospital discharge can prevent dangerous infections
February 16, 2019 - Children with ASD more likely to face maltreatment, study finds
February 16, 2019 - Study finds genetic vulnerability to use of menthol cigarettes
February 16, 2019 - H-RT should be the standard of care for men with low risk prostate cancer, study shows
February 16, 2019 - New technique using patients’ own modified cells could help treat Crohn’s disease
February 16, 2019 - Therapeutic endoscopy has an expanding role in the treatment of IBD
February 16, 2019 - Blood clot discovery could lead to development of better treatments for blood diseases
February 16, 2019 - Intervention can increase exclusive breastfeeding rates
February 16, 2019 - New project explores how gaming technologies can help cancer patients communicate better
February 16, 2019 - Catalyst Biosciences Presents Updated Data from Its Phase 2/3 Trial of Subcutaneous Marzeptacog Alfa (Activated) in Individuals with Hemophilia A or B with Inhibitors at the 12th Annual EAHAD Congress
February 16, 2019 - Rerouting nerves during amputation reduces phantom limb pain before it starts
February 16, 2019 - A Hormone Produced When We Exercise Might Help Fight Alzheimer’s
February 16, 2019 - Millions of British people breathe toxic air travelling to GPs
February 16, 2019 - Conformance of genetic characteristics found to be crucial for longer preservation of kidney graft
February 16, 2019 - Researchers use optogenetic tool to control, visualize receptor signals in neural cells
February 16, 2019 - New reversible antiplatelet therapy could reduce risk of blood clots, prevent cancer metastasis
February 16, 2019 - Testosterone is not the only hormone needed for penis development
February 16, 2019 - FDA Advisory Committee Recommends Approval of Spravato (esketamine) Nasal Spray for Adults with Treatment-Resistant Depression
February 15, 2019 - Heart surgery technology developed at Baptist Health debuts after years of secrecy
February 15, 2019 - Prescription Opioids Double Risk of Triggering Fatal Car Crash
February 15, 2019 - New study helps doctors better understand high blood pressure in pregnant women
February 15, 2019 - Beta wave control in Parkinson’s diseased brain could be a potential therapy
February 15, 2019 - Media representations of love may justify gender-based violence in young people
February 15, 2019 - Yoga May Help With Rheumatoid Arthritis Symptoms, Severity
February 15, 2019 - Obstructive sleep apnea linked to inflammation, organ dysfunction
February 15, 2019 - Master your mind: A challenge from WELL for Life
February 15, 2019 - Why Some Brain Tumors Respond to Immunotherapy
February 15, 2019 - Must-Reads Of The Week From Brianna Labuskes
February 15, 2019 - Researchers uncover novel mechanism and potential new therapeutic target for Alzheimer’s
February 15, 2019 - Genetic variations in a fourth gene associated with higher ALL risk in Hispanic children
February 15, 2019 - Disruptive behavioral problems in kindergarten linked with lower employment earnings in adulthood
February 15, 2019 - New bioengineered device enhances the production of T-cells
February 15, 2019 - HDL proteome behaves like a tiny Velcro ball that is rolling on surfaces
February 15, 2019 - Puerto Rican children more likely to have poor or decreasing use of asthma inhalers
February 15, 2019 - Quality of patient care does not improve after physician-hospital integration
February 15, 2019 - Synopsys release new software for implant design and patient-specific planning
Researchers use immune-mimicking biomaterial scaffolds to fast track T cell therapies

Researchers use immune-mimicking biomaterial scaffolds to fast track T cell therapies

image_pdfDownload PDFimage_print

Immunologists and oncologists are harnessing the body’s immune system to fight cancers and other diseases with adoptive cell transfer techniques. In a normal immune response, a type of white blood cell known as T cells are instructed by another kind of immune cell called an antigen-presenting cell (APC) to expand their numbers and stay alive. Adoptive cell transfer procedures are mimicking exactly this process in a culture dish by taking T cells from patients, multiplying them, sometimes genetically modifying them, and then returning them to patients so that they can, for example, locate and kill cancer cells. However, these procedures often take weeks to produce batches of therapeutic T cells that are large and reactive enough to be able to eliminate their target cells.

A team led by David Mooney at Harvard’s Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS) is now reporting in Nature Biotechnology an alternative material-based T-cell-expansion method that could help surmount these obstacles. With an APC-mimetic biomaterial scaffold, the researchers achieved greater expansion of primary mouse and human T cells than with existing methods; and they demonstrated the approach’s potential in a mouse lymphoma model treated with chimeric antigen receptor-expressing T cells (CAR-T cells) that are engineered to home in on and destroy lymphoma cells.

“Our approach closely mimics how APCs present their stimulating cues to primary T cells on their outer membrane and how they release soluble factors that enhance the survival of the T cells. As a result, we achieve much faster and greater expansion. By varying the compositions of lipids, cues, and diffusible factors in the scaffolds, we engineered a very versatile and flexible platform that can be used to amplify specific T cell populations from blood samples, and that could be deployed in existing therapies such as CAR-T cell therapies,” said Mooney, Ph.D., a Core Faculty member at the Wyss Institute and leader of its Immunomaterials Platform. Mooney is also the Robert P. Pinkas Family Professor of Bioengineering at SEAS.

To engineer an APC-mimetic scaffold, the team first loaded tiny mesoporous silica rods (MSRs) with Interleukin 2 (IL-2) ¬– an APC-produced factor that prolongs the survival of associated T cells. The MSRs were then coated with lipids that formed a thin supported lipid bilayer (SLB), which resembles the outer membrane of APCs and that the researchers then functionalized with a pair of T cell-stimulating antibodies that remain mobile in the lipid layer and can bind to receptor/co-receptor molecules on the surface of T cells. In culture medium, 3D scaffolds spontaneously formed through the settling and random stacking of the rods, forming pores big enough to allow the entry, movement, and accumulation of T cells, thereby signaling them to multiply.

In a series of side-by-side comparisons, Mooney’s team demonstrated that APC-mimetic scaffolds performed better than methods involving commercially available expansion beads (Dynabeads), which are currently used in clinical adoptive cell transfer approaches. “In a single dose, APC-mimetic scaffolds led to two- to ten-fold greater expansion of primary mouse and human T cells than Dynabeads. As another advantage, APC-mimetic scaffolds enabled us to tune the ratios of subpopulations of T cells with different roles in the desired immune responses, which in the future might increase their functionality,” said David Zhang, the study’s second author and a Graduate Student working with Mooney.

Building on these findings, the researchers demonstrated the utility of their T cell expansion platform in a therapeutic model. “Prompted by recent breakthroughs in CAR-T cell therapies, we showed that a specific CAR-T cell product expanded with an APC-mimetic scaffold could facilitate treatment of a mouse model of a human lymphoma cancer,” said first author Alexander Cheung, Ph.D., who started the project in Mooney’s team and now is a scientist at UNUM Therapeutics in Cambridge, Massachusetts. An APC-mimetic scaffold that was engineered to activate a specific type of CAR-T cell was able to generate higher numbers of the modified T cells over longer periods of culture than analogously designed expansion beads, and the resulting cells were similarly effective in killing the lymphoma cells in the mice.

After successfully using the material to expand all T cells present in a sample, the team demonstrated that APC-mimetic scaffolds could also be used to expand antigen-specific T cell clones from a more complex mixture of cells. Such T cell clones are constantly developed by the immune system to recognize small specific peptides contained in foreign proteins. To this aim, the researchers incorporated molecules into the scaffolds that are known as the major histocompatibility complex (MHC) and that presented small peptides derived from viral proteins to T cells.

“Based also on studies in which we showed that APC-mimetic scaffolds also have superior potential to specifically enrich and expand rare T cell sub-populations from blood, we strongly believe that we created an effective platform technology that could facilitate more effective precision immunotherapies,” said Cheung.

“The bioinspired T cell-activating scaffolds developed by the Wyss Institute’s Immunomaterials Platform could accelerate the success of many immunotherapeutic approaches in the clinic, with life-saving impact on a broad range of patients, in addition to advancing personalized medicine,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at SEAS.

Source:

https://wyss.harvard.edu/fast-tracking-t-cell-therapies-with-immune-mimicking-biomaterials/

Tagged with:

About author

Related Articles