Breaking News
February 18, 2019 - Combination of PARP inhibitor and immunotherapy results in tumor regression in SCLC mouse models
February 18, 2019 - Heavy smoking could lead to vision loss, study finds
February 18, 2019 - New diagnostic test for malaria uses spit, not blood
February 18, 2019 - New therapeutic molecules show promise in reversing memory loss related to depression, aging
February 18, 2019 - Darla Shine joins anti-vaccination campaigners
February 18, 2019 - New study outlines sex-specific issues in ischemic heart disease
February 18, 2019 - Drug combinations could become first-line treatment for metastatic kidney cancer
February 18, 2019 - Lifetime adversity, increased neural processing during trauma combine to intensify core PTSD symptoms
February 18, 2019 - HRQoL Scores Decrease With Treatment Line in Multiple Myeloma
February 18, 2019 - Convincing evidence that type 2 diabetes is a cause of erectile dysfunction
February 18, 2019 - Art Institute of Chicago announces results of research on five terracotta sculptures
February 18, 2019 - New PET/CT tracer shows high detection rate for diagnosis of acute venous thromboembolism
February 18, 2019 - Smoking may blight immune response against melanoma and reduce survival
February 18, 2019 - How Inactivity and Junk Food Can Harm Your Brain
February 18, 2019 - Diabetes tops common conditions for frequent geriatric emergency patients
February 18, 2019 - Longer-lived sperm produces offspring with healthier lifespans
February 18, 2019 - New dental adhesive prevents tooth decay around orthodontic brackets
February 18, 2019 - New eHealth tool shows potential to improve quality of asthma care
February 18, 2019 - New Australian initiative helps emergency clinicians to improve patient care
February 17, 2019 - Apellis Pharmaceuticals’ APL-2 Receives Fast Track Designation from the FDA for the Treatment of Patients with Paroxysmal Nocturnal Hemoglobinuria
February 17, 2019 - Researchers identify faulty ‘brake’ that interferes with heart muscle’s ability to contract and relax
February 17, 2019 - Support from trusted adults can reduce risk of dying in suicidal teens, finds study
February 17, 2019 - Heart attack awareness improved since 2008
February 17, 2019 - Exercise gives a better brain boost to older men than women
February 17, 2019 - New research disproves previous assumptions of how looks influence personality
February 17, 2019 - Cannabis use as a teenager linked to depression later in life
February 17, 2019 - Sinks by Toilets in ICU Patient Rooms Harbor Harmful Bacteria
February 17, 2019 - Cancer cells’ plasticity makes them harder to stop
February 17, 2019 - Young cannabis users have increased risk of depression and suicidal behavior
February 17, 2019 - Tasmanian Devils Likely to Survive Cancer Scourge
February 17, 2019 - Neoadjuvant PD-1 blockade seems effective in glioblastoma
February 17, 2019 - Personal, social factors play role in enabling sustainable return to work after ill health
February 17, 2019 - Mouse studies show ‘inhibition’ theory of autism wrong
February 17, 2019 - Study shows how neuroactive steroids inhibit activity of pro-inflammatory proteins
February 17, 2019 - Use of liver grafts from older donors decreased despite better outcomes in recipients
February 17, 2019 - MUSC researchers discover new mechanism for a class of anti-cancer drugs
February 17, 2019 - HPV misconceptions are causing women to miss smear tests
February 17, 2019 - Sanofi and Regeneron Offer Praluent (alirocumab) at a New Reduced U.S. List Price
February 17, 2019 - Researchers say auditory testing can identify children for autism screening
February 17, 2019 - New method analyzes how single biological cells react to stressful situations
February 17, 2019 - WVU gynecologic oncologist investigates novel treatment for cervical and vaginal cancers
February 17, 2019 - ADHD diagnoses poorly documented
February 17, 2019 - Majority of gender minority youth do not identify with traditional sexual identity labels
February 17, 2019 - AbbVie, Teneobio enter into strategic transaction to develop potential treatment for multiple myeloma
February 17, 2019 - Lower Birth Weight May Up Risk for Psychiatric Disorders
February 17, 2019 - Scientists identify reversible molecular defect underlying rheumatoid arthritis
February 17, 2019 - Moffitt researchers shed light on how CAR T cells function mechanistically
February 16, 2019 - Female Anatomy May Play Big Role in Sperm’s Success
February 16, 2019 - BMI may mediate inverse link between fiber intake, knee OA
February 16, 2019 - Movement impairments in autism can be reversed through behavioral training
February 16, 2019 - Studies address racial disparities in postpartum period and cardiovascular health
February 16, 2019 - Scientists implicate hidden genes in the severity of autism symptoms
February 16, 2019 - Decreased deep sleep linked to early signs of Alzheimer’s disease
February 16, 2019 - Neuroscientists show how the brain responds to texture
February 16, 2019 - Gilead Announces Topline Data From Phase 3 STELLAR-4 Study of Selonsertib in Compensated Cirrhosis (F4) Due to Nonalcoholic Steatohepatitis (NASH)
February 16, 2019 - What Can I Do About Sweating? (for Teens)
February 16, 2019 - Companies navigate dementia conversations with older workers
February 16, 2019 - Newly developed stem cell technologies show promise for treating PD patients
February 16, 2019 - Collaborative material research could advance self-assembling nanomaterials
February 16, 2019 - Researchers take major step in creating technology that mimics the human brain
February 16, 2019 - Erasing memories associated with cocaine use reduces drug seeking behavior
February 16, 2019 - Artificial intelligence can accurately predict prognosis of ovarian cancer patients
February 16, 2019 - Racial disparities in cancer deaths on the decline for America
February 16, 2019 - FDA authorizes new interoperable insulin pump for children, adults with diabetes
February 16, 2019 - Coexisting Medical Conditions, Smoking Explain PTSD-CVD Link
February 16, 2019 - Skin Cancer Screening: MedlinePlus Lab Test Information
February 16, 2019 - ‘Happiness’ exercises can boost mood in those recovering from substance use disorder
February 16, 2019 - Cell manipulation could soon halt or reverse aging
February 16, 2019 - Pumped Breast Milk Falls Short of Breastfed Version
February 16, 2019 - Men’s porn habits could fuel partners’ eating disorders, study suggests
February 16, 2019 - Rapid progression of age-related diseases may result from formation of vicious cycles
February 16, 2019 - Immune checkpoint molecule protects against future development of cancer
February 16, 2019 - New method produces hydrogels that have properties similar to cells’ environment
February 16, 2019 - $4.1 million funding for heart research on Valentine’s Day
February 16, 2019 - General anesthesia in early infancy unlikely to have lasting effects on developing brains
February 16, 2019 - New breakthroughs for muscular dystrophy research
February 16, 2019 - First Opinion: Embryo editing for higher IQ is a fantasy. Embryo profiling for it is almost here
February 16, 2019 - Vapers develop cancer-related gene deregulation as cigarette smokers
February 16, 2019 - Bringing Antimicrobial Susceptibility Testing (AST) to the Community
February 16, 2019 - Decolonization protocol after hospital discharge can prevent dangerous infections
Researchers identify new anti-inflammatory drug target

Researchers identify new anti-inflammatory drug target

image_pdfDownload PDFimage_print

A collaborative study conducted by the Division of Hemostasis and Thrombosis at Beth Israel Deaconess Medical Center (BIDMC) and the Wyss Institute at Harvard University suggests that parmodulins may provide anti-inflammatory and anti-thrombotic protection to endothelial cells, without interfering with blood clotting.

Credit: Illustration Forest/Shutterstock.com

This discovery makes parmodulins an attractive new drug candidate.

Inflammation is one of the most vital and troublesome processes in the human body. Although inflammatory responses are critical for engaging the immune system to overcome disease and injury, they can also lead to a rise in the production of thrombin, which may in turn cause harmful blood clots and other conditions.

Activated protein C (APC) is a natural anticoagulant protein used for treating severe blood infections and wounds. Although APC possesses anti-inflammatory and other protective effects, its use is limited as its inhibition of thrombin affects the blood’s ability to clot, and increases bleeding risk.

Paramodulins are synthetic activated protein C (APC)-mimicking small molecules.

In the present study, the researchers performed a mini preclinical trial of parmodulins’ effect on the endothelium. They identified the pathway through which parmodulins function, and demonstrated that they help protect endothelial cells from inflammatory damage.

The transmembrane protein protease-activated receptor 1 (PAR1) is the target protein on which both APC and parmodulins act. PAR1 makes mechanistic analysis difficult as it is present on both endothelial cells that line blood vessels as well as on platelets that circulate through the blood and promote clotting.

PAR1 was earlier identified as a receptor for thrombin; an important factor in the inflammatory process. Yet, when it is activated on the endothelium by APC, it triggers anti-apoptotic, anti-inflammatory, and barrier-fortifying pathways that help in protecting cells from the adverse impacts of inflammation.

Apart from activating PAR1, APC also inhibits the generation of thrombin independently, which is a vital element of healthy blood clotting. However, excessive inhibition of thrombin results in uncontrolled bleeding.

As the researchers knew that parmodulins bind to PAR1, they aimed to find a way to activate endothelial PAR1 and decrease thrombic responses without thinning the blood, and thereby provide a better substitute for APC.

Human endothelial cells were incubated with parmodulin 2 in vitro for 4 hours in order to examine the activity of parmodulins on the endothelium. It was then exposed to lipopolysaccharide (LPS); the thrombin-inducing inflammatory agent, or tumor necrosis factor-α (TNF-α).

In comparison with non-parmodulin-exposed cells, the ability of both the agents to generate thrombin was decreased by more than 50% in the parmodulin-exposed cells. However, the activity of factor V or factor X, proteins that function in blood coagulation was not inhibited by parmodulin.

We were intrigued by the notion that parmodulin 2 inhibited LPS- and TNF-mediated prothrombotic effects on the endothelial surface without impairing blood clotting.”

Dr. Karen De Ceunynck, postdoctoral research fellow at BIDMC and the first author of the paper

A blood-vessel-on-a-chip developed at Wyss institute that consisted of microfluidic channels embedded in a clear polymer chip, coated with collagen, and lined by human endothelial cells was used to validate this theory.

To simulate the flow conditions within human blood vessels, whole blood was perfused through the chip along with  various pro- and anti-inflammatory compounds.

The researchers found that during a typical inflammatory response, platelets exposed to TNF-α concentrated on the endothelium. However, when exposed to paramodulin 2 prior to TNF-α, was inhibited and the endothelium resumed its normal function.

Thus, the results suggested that parmodulin exposure blocks the thrombotic response of endothelium to inflammatory response, without affecting blood coagulation in humans.

A set of in vitro tests performed by Dr. Christian Peters, at BIDMC, confirmed that activation of PAR1 by parmodulin 2 induces cytoprotective responses in endothelial cells by inhibiting apoptosis, normally induced by thrombin, TNF-α, and the apoptotic alkaloid staurosporine.

This occurs via a signaling pathway that starts with the binding of parmodulin 2 to a specific site on the cytoplasmic side of PAR1.

Dr. Peters commented: “We observed that the cytoprotective response induced by parmodulin 2 happened very quickly, and confirmed its rapid onset in time course and gene expression assays.”

In vivo studies in mice indicated that parmodulin 2 decreases the binding of white blood cells to blood vessels and impairs platelet and fibrin accumulation at injury sites during the inflammatory response.

This observation confirmed the anti-coagulant and anti-thrombotic activity of parmodulin 2 seen in vitro.

Parmodulins don’t interact with many of APC’s other binding partners. This property makes it much more targeted to PAR1 and reduces other side effects.

According to Professor Rob Flaumenhaft, M.D., Ph.D., Professor of Medicine at Harvard Medical School and Chief of the Division of Hemostasis and Thrombosis at BIDMC, and corresponding author of the paper, the discovery of an anti-inflammatory molecule that prevents endothelial thrombosis and also preserves normal blood coagulation is a major step forward in the treatment of inflammatory diseases.

Professor Flaumenhaft added, “Nearly all other pharmaceuticals that target G-protein coupled receptors like PAR1 bind to the exterior of the receptor. Parmodulin 2 represents a paradigm shift for compounds targeting GPCRs because it acts on internal domains. We are excited to see if we can advance it to clinical trials”

This work provides another example of how organ-on-a-chip technology can enable faster and safer development and evaluation of drugs that could help patients around the world.”

Donald Ingber, M.D., Ph.D., co-author and Wyss Institute Founding Director

Tagged with:

About author

Related Articles