Breaking News
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
January 19, 2019 - First-ever tailored reporting guidance to improve patient care and outcomes
January 19, 2019 - 4.6 percent of Massachusetts residents have opioid use disorder
January 19, 2019 - New study suggests vital exhaustion as risk factor for dementia
January 19, 2019 - New antibiotic discovery heralds breakthrough in the fight against drug-resistant bacteria
January 19, 2019 - Ural Federal University scientists synthesize a group of multi-purpose fluorophores
January 19, 2019 - Researchers identify new therapeutic target in the fight against chronic liver diseases
January 19, 2019 - Preparation, characterization of Soyasapogenol B loaded onto functionalized MWCNTs
January 19, 2019 - FDA Approves Ontruzant (trastuzumab-dttb), a Biosimilar to Herceptin
January 19, 2019 - Tobacco use linked with higher use of opioids and sedatives
January 19, 2019 - Study delves deeper into developmental dyslexia
January 19, 2019 - Anti-vaccination movement one of the top health threats in 2019 says WHO
January 19, 2019 - Newly developed risk score more effective at identifying type 1 diabetes
January 19, 2019 - Highly effective protocol to prepare cannabis samples for THC/CBD analysis
January 19, 2019 - Prinston Pharmaceutical Inc. Issues Voluntary Nationwide Recall of Irbesartan and Irbesartan HCTZ Tablets Due to Detection of a Trace Amount of Unexpected Impurity, N-Nitrosodiethylamine (NDEA) in the Products
January 19, 2019 - How does solid stress from brain tumors cause neuronal loss, neurologic dysfunction?
January 19, 2019 - $14.7 million partnership to supercharge vaccine development
January 19, 2019 - Ian Fotheringham receives Charles Tennant Memorial Lecture award
January 19, 2019 - Brain vital signs detect neurophysiological impairments in players with concussions
January 19, 2019 - Lack of job and poor housing conditions increased likelihood of people attending A&E
January 19, 2019 - Novel targeted drug delivery system improves conventional cancer treatments
January 19, 2019 - Rutgers study finds gene responsible for spread of prostate cancer
January 19, 2019 - Complications Higher Than Expected for Invasive Lung Tests
January 19, 2019 - 3-D printed implant promotes nerve cell growth to treat spinal cord injury
January 19, 2019 - Automated texts lead to improved outcomes after total knee or hip replacement surgery
January 19, 2019 - Poor cardiorespiratory fitness could increase risk of future heart attack, finds new study
January 19, 2019 - Drinking soft drinks while exercising in hot weather may increase risk of kidney disease
January 19, 2019 - Formlabs 3D prints anatomical models
January 19, 2019 - Heart-Healthy Living Also Wards Off Type 2 Diabetes
January 19, 2019 - Teaching Kids to Be Smart About Social Media (for Parents)
January 19, 2019 - Metabolite produced by gut microbiota from pomegranates reduces inflammatory bowel disease
January 19, 2019 - Researchers examine how spray from showers and toilets expose us to disease causing bacteria
January 19, 2019 - Behavioral experiments confirm that additional neurons improve brain function
January 19, 2019 - New study compares performance of real-time infectious disease forecasting models
January 19, 2019 - Obesity can be risk factor for developing renal cell carcinoma, confirms study
January 19, 2019 - New regulation designs on cigarette packs direct smokers’ attention to health warnings
January 19, 2019 - QIAGEN receives first companion diagnostic approval in Japan
January 19, 2019 - Study explores role of Dunning-Kruger effect in anti-vaccine attitudes
January 19, 2019 - Hepatitis C-infected patients with a history of liver cancer can be treated with antivirals
January 19, 2019 - Study shows how gut bacteria affect the treatment of Parkinson’s disease
Scientists discover promising new target to fight a class of viruses

Scientists discover promising new target to fight a class of viruses

image_pdfDownload PDFimage_print

Scientists at the Morgridge Institute for Research have discovered a promising new target to fight a class of viruses responsible for health threats such as Zika, polio, dengue, SARS and hepatitis C.

Masaki Nishikiori, a researcher in the Morgridge Institute virology group led by Paul Ahlquist, Morgridge investigator and professor of oncology and molecular virology at the University of Wisconsin-Madison, showed for the first time that, in replicating their genomes, viruses create pores inside parts of the cell that are normally walled off. This process of “punching through cellular walls” allows the virus to operate across different parts of the cell to activate and regulate its replication.

This could be big news in the quest to develop broad-spectrum antivirals, which are vaccines or drugs that target entire families of viruses. There are hundreds of viruses that threaten human health, but today the only way to combat them is by targeting each individual strain, rather than finding a common weakness.

The study, published today (Jan. 24) in the journal Science Advances, looks at a class known as positive-strand RNA viruses, which make up one-third of all known viruses (including the common cold). It appears that this pore-creating mechanism could be common across many or most members of this family of viruses.

“One exciting aspect of these results is that pores of different kinds in membranes are very important for many biological processes, and there are established drugs that interfere with them,” says Nishikiori. “We now recognize that this virus, and based on conserved features likely most viruses in this class, depend on similar types of pores to replicate. This is a target we know how to interfere with.”

Current pore-blocking drugs, also referred to as channel blockers, are used in treating high blood pressure, certain neurological or psychiatric disorders, including Alzheimer’s disease, and other maladies.

Nishikiori used biochemical and molecular genetic approaches to reveal the virus’ capacity to create and employ pores in a cell membrane. He used an advanced bromovirus model that allowed virus replication in yeast cells, which provided a highly controllable system to modify and assess both virus and host cell contributions.

In order to spread throughout the body, viruses hijack normal cell structures and functions to achieve their own ends. This class of virus, for example, always anchors its genome replication process to the membrane surfaces of cell sub-compartments or organelles (in this case, the endoplasmic reticulum). It had been understood this process occurred solely on one side of the membrane, outside of the organelle.

This study reveals the conventional view is incomplete. Nishikiori found that an enzyme called ERO1, which resides exclusively inside the organelle, on the opposite side of the membrane, is crucial to promoting the viral replication process. Reduce ERO1 and viral replication goes down, and vice versa, Nishikiori says.

The surprise was: How could an enzyme that was walled off from the virus by a solid membrane barrier activate viral growth? This was their first clue that something must be bridging the membrane. When combined with other insights, the team discovered that a key viral protein builds a pore or pipeline across the membrane, enabling ERO1 to affect viral replication on the other side.

Nishikiori previously found that the proteins creating these pores become strongly linked together by a particular kind of chemical bond, called a disulfide bond. However, these bonds can only be created in an oxidized environment. This explains at least one purpose behind the pores, Nishikiori says. They allow delivery of oxidizing power into the normally non-oxidized cytoplasm to form the disulfide bonds. “When the viral protein creates this pore, it allows oxidants generated by ERO1 to leach from the organelle interior into the cytoplasm and create a plume of oxidizing power,” he says.

Ahlquist speculates that the virus may use these strong linkages to keep the viral genome replication apparatus intact. Drawing on other recent findings, he says viral replication complexes inside cells are under significant pressure and at risk of breaking off before replication is complete. The strong bonds might be similar to the wire cage holding the cork in place on a champagne bottle, he says.

Basic research on the mechanisms of viral replication is essential to the larger quest to find broad-spectrum antivirals, one of the holy grails of virology, Ahlquist says.

“When you apply an over-the-counter anti-bacterial cream to a child’s scraped knee, it works even though you don’t know exactly which bacteria you’re fighting,” he says. “We don’t have anything like that for viruses; most of our antiviral vaccines and drugs are virus-specific. We need new approaches that target broadly conserved viral features to simultaneously inhibit many viruses.”

Tagged with:

About author

Related Articles