Breaking News
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
December 18, 2018 - Russian scientists identify molecular ‘switch’ that could be target for treatment of allergic asthma
December 18, 2018 - Surgeons make more mistakes in the operating room during stressful moments, shows study
December 18, 2018 - Immune cells explode themselves to inform about the danger of invading bacteria
December 18, 2018 - Malnutrition in children with Crohn’s disease linked with increased risk of surgical complications
December 18, 2018 - FDA Approves Motegrity (prucalopride) for Adults with Chronic Idiopathic Constipation (CIC)
December 18, 2018 - The long and short of CDK12
December 18, 2018 - Hologic’s Cynosure division introduces TempSure Surgical RF technology in North America
December 18, 2018 - CMR Surgical partners with Nicholson Center to launch U.S.-based training program for Versius
December 18, 2018 - Findings reinforce guidelines for cautious use of antipsychotics in younger populations
December 18, 2018 - Study finds new strains of hepatitis C virus in sub-Saharan Africa
December 18, 2018 - New battery-free, implantable device aids weight loss
December 18, 2018 - Parental alcohol use disorder associated with offspring marital outcomes
December 18, 2018 - Novel Breast Imaging Technique Might Cut Unnecessary Biopsies
December 18, 2018 - What can a snowflake teach us about how cancer spreads in the body?
December 18, 2018 - Management of nausea and vomiting in pregnancy costs the NHS more than previously thought
December 18, 2018 - Green leafy vegetables may reduce risk of developing liver steatosis
December 18, 2018 - Veganism linked to nutrient deficiencies and malnutrition if not planned correctly
December 18, 2018 - Coming Soon: A Tiny Robot You Swallow to Help You Stay Healthy
December 18, 2018 - Modified malaria drug proven effective at inhibiting Ebola
December 18, 2018 - Study finds epigenetic differences in the brains of individuals with schizophrenia
December 18, 2018 - Fitness instructors’ motivational comments influence women’s body satisfaction
December 18, 2018 - Study focuses on modification of lipid nanoparticles for successful brain cell targeting
December 18, 2018 - New gut bacteria may be effective against obesity, metabolic and mental disorders
December 18, 2018 - New two-in-one powder aerosol to upgrade fight against deadly superbugs in lungs
December 18, 2018 - Biofilms feed with swirling flows
December 17, 2018 - Study identifies specific neurological changes related to traumatic brain injury
December 17, 2018 - New study confirms geographic bias in lung allocation for transplant
December 17, 2018 - Research focuses on optimization of solid lipid nanoparticle that encapsulates Vinorelbine bitartrate
December 17, 2018 - Carpal tunnel syndrome – Genetics Home Reference
December 17, 2018 - A novel insulin accelerant
December 17, 2018 - Tips for caring for patients with disabilities, from a mother and physician
December 17, 2018 - Menopause-related sexual, urinary problems tied to worse quality of life
December 17, 2018 - In-school nutrition programs among students limit increases in BMI, finds study
December 17, 2018 - Risk for Hospitalization for Heart Failure Greater With Diabetes
December 17, 2018 - Food assistance may help older adults adhere to diabetes meds
December 17, 2018 - Supporting a family’s goals during a difficult pregnancy
December 17, 2018 - Neurons with Good Housekeeping Are Protected from Alzheimer’s
December 17, 2018 - New approach to tumor analysis could improve prognosis for bowel cancer patients
December 17, 2018 - New ‘epigenetics-based’ cervical cancer test outperforms Pap smear and HPV tests
December 17, 2018 - Ten year follow-up after negative colonoscopy related to reduced risk of colorectal cancer
December 17, 2018 - CTF along with NTAP and Sage announce first-ever open data portal for neurofibromatosis
December 17, 2018 - Intimacy: The Elusive Fountain of Youth?
December 17, 2018 - Will saliva translate to a real diagnostic tool?
December 17, 2018 - DFG establishes nine new Research Units and one new Clinical Research Unit
December 17, 2018 - Assisted living’s breakneck growth leaves patient safety behind
December 17, 2018 - America’s teens report dramatic increase in their use of vaping devices in just one year
December 17, 2018 - Enlarged heart linked to a higher risk of dementia
December 17, 2018 - Prostate cancer detection using MRI now first-line investigation tool
December 17, 2018 - Loughborough academics part of new project investigating effectiveness of personalized breast cancer screening
December 17, 2018 - Adolescents who use cognitive reappraisal had better metabolic measures, shows study
December 17, 2018 - Probiotics may offer therapeutic benefits for biopolar patients
December 17, 2018 - Stealth BioTherapeutics Granted Fast Track Designation for Elamipretide for the Treatment of Dry Age-Related Macular Degeneration with Geographic Atrophy
December 17, 2018 - Studies reveal role of red meat in gut bacteria, heart disease development
December 17, 2018 - Eisai enters into agreement with Eurofarma for its anti-obesity agent lorcaserin
December 17, 2018 - Researchers use brain connectome to reassess neuroimaging findings of Alzheimer’s disease
December 17, 2018 - “Miracle” baby survives Ebola in Congo and rapid a new Ebola detection device
December 17, 2018 - Mechanisms behind neonatal diabetes uncovered
December 17, 2018 - AHF urges the WHO to expedite approval process for vaccine effective against Ebola
December 17, 2018 - Study finds misuse of benzodiazepines to be highest among young adults
December 17, 2018 - TGen receives PayPal grant to underwrite costs of genetic tests for children with rare disorders
December 17, 2018 - New research highlights why HIV-infected patients suffer higher rates of cancer
December 17, 2018 - Antibiotic-resistant bacteria could soon be targeted with Alzheimer’s drug
December 17, 2018 - Rutgers scientists take an important step in making diseased hearts heal themselves
December 17, 2018 - Tailored Feedback at CRC Screen Improves Lifestyle Behaviors
December 17, 2018 - Loss of two genes drives a deadly form of colorectal cancer, reveals a potential treatment
December 17, 2018 - How the Mediterranean Diet Can Help Women’s Hearts
December 17, 2018 - Sustained connections associated with symptoms of autism
December 17, 2018 - Concussion rates among young football players were higher than previously reported
December 17, 2018 - Cresco Labs granted approval to operate marijuana dispensary in Ohio
December 17, 2018 - Study provides insight into health risks facing new mothers
December 17, 2018 - AMSBIO expands Wnt signaling pathway product range to aid research
December 16, 2018 - Surgical treatment unnecessary for many prostate cancer patients
Harvard scientists identify molecular machinery responsible for dopamine release in the brain

Harvard scientists identify molecular machinery responsible for dopamine release in the brain

image_pdfDownload PDFimage_print

Studied for decades for its critical role in movement control and reward-seeking behaviors, the neurotransmitter dopamine has been the focus of numerous efforts to understand its activity, particularly when it goes awry in disorders such as Parkinson’s and addiction.

While researchers have made great strides, less is known about the mechanisms that healthy dopamine cells use to release the neurotransmitter, a gap that has limited scientists’ ability to develop treatments for a range of dopamine-related conditions.

Now, researchers from Harvard Medical School have for the first time identified the molecular machinery responsible for the precise secretion of dopamine in the brain.

Their work, published online in Cell on Feb. 1, identifies specialized sites in dopamine-producing neurons that release the dopamine in a fast, spatially precise manner-;a finding that runs counter to current models of how the neurotransmitter transmits signals in the brain.

“The dopamine system plays an essential role in many diseases, but fewer studies have asked the fundamental question of how healthy dopamine neurons release the neurotransmitter,” said senior study author Pascal Kaeser, assistant professor of neurobiology at Harvard Medical School.

“If your car breaks down and you want it fixed, you want your mechanic to know how a car works,” he added. “Similarly, a better understanding of dopamine in the laboratory could have a tremendous impact on the ability to treat disorders in which dopamine signaling goes awry in the long term.”

In the brain, roughly 0.01 percent of neurons are responsible for dopamine production, but they control a broad and diverse range of brain processes, including motor control, the reward system, learning and memory.

Dopamine research has centered on its dysfunction and on the protein receptors that neurons use to receive dopamine, said Kaeser. Despite the neurotransmitter’s importance, studies on how it is released in the brain under normal circumstances have been limited, he added.

Promiscuous No More

To identify the molecular machinery responsible for dopamine secretion, Kaeser and his colleagues focused on dopamine-producing neurons in the midbrain, which are involved in the neural circuitry underlying movement and reward seeking.

They first searched for active zones-;specialized neurotransmitter release sites located at synapses, the junctions that connect one neuron to the another. Using super-resolution microscopy to image sections of the brain into which dopamine neurons project, the team found that dopamine neurons contained proteins that mark the presence of active zones.

These zones indicate that a neuron may engage in fast synaptic transmission, in which a neurotransmitter signal is precisely transferred from one neuron to another within milliseconds.

This was the first evidence of fast active zones in dopamine neurons, which were previously thought to engage in only so-called volume transmission-;a process in which the neurotransmitter signals slowly and nonspecifically across relatively large areas of the brain.

Active zones were found at lower densities in dopamine neurons than in other neurons, and additional experiments revealed in detail how the neurotransmitter is rapidly secreted and reabsorbed at these sites.

“I think that our findings will change how we think about dopamine,” Kaeser said. “Our data suggest that dopamine is released in very specific locations, with incredible spatial precision and speed, whereas before it was thought that dopamine was slowly and promiscuously secreted.”

In another set of experiments, the researchers used genetic tools to delete several active zone proteins. Deleting one specific protein, RIM, was sufficient to almost entirely abolish dopamine secretion in mice. RIM has been implicated in a range of diseases including neuropsychiatric and developmental disorders.

Deleting another active zone protein, however, had little or no effect on dopamine release, suggesting that dopamine secretion relies on unique specialized machinery, the authors said.

“Our study indicates that dopamine signaling is much more organized than previously thought,” said study first author Changliang Liu, an Alice and Joseph Brooks Postdoctoral Fellow and a Gordon Fellow in the Kaeser lab.

“We showed that active zones and RIM, which is associated with diseases such as schizophrenia and autism spectrum disorders in human genetic studies, are key for dopamine signaling,” Liu said. “These newly identified mechanisms may be related to these disorders and may lead to new therapeutic strategies in the future.”

The team is now working to investigate these active zones in greater detail to build a deeper understanding of their role in dopamine signaling and how to manipulate them.

“We are deeply invested in learning the entire dopamine signaling machine. Right now, most treatments supply the brain with dopamine in excess, which comes with many side effects because it activates processes that shouldn’t be active,” Kaeser said.

“Our long-term hope is to identify proteins that only mediate dopamine secretion,” he said. “One can imagine that by manipulating the release of dopamine, we may be better able to reconstruct normal signaling in the brain.”

Source:

https://hms.harvard.edu/news/zeroing-dopamine

Tagged with:

About author

Related Articles