Breaking News
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
Findings reveal dramatic landscape of genetic changes in the brain in response to visual stimulation

Findings reveal dramatic landscape of genetic changes in the brain in response to visual stimulation

image_pdfDownload PDFimage_print

“Nature and nurture is a convenient jingle of words, for it separates under two distinct heads the innumerable elements of which personality is composed. Nature is all that a man brings with himself into the world; nurture is every influence from without that affects him after his birth.” – Francis Galton, cousin of Charles Darwin, 1874.

Is it nature or nurture that ultimately shapes a human? Are actions and behaviors a result of genes or environment? Variations of these questions have been explored by countless philosophers and scientists across millennia. Yet, as biologists continue to better understand the mechanisms that underlie brain function, it is increasingly apparent that this long-debated dichotomy may be no dichotomy at all.

In a study published in Nature Neuroscience on Jan. 21, neuroscientists and systems biologists from Harvard Medical School reveal just how inexorably interwoven nature and nurture are in the mouse brain. Using novel technologies developed at HMS, the team looked at how a single sensory experience affects gene expression in the brain by analyzing more than 114,000 individual cells in the mouse visual cortex before and after exposure to light.

Their findings revealed a dramatic and diverse landscape of gene expression changes across all cell types, involving 611 different genes, many linked to neural connectivity and the brain’s ability to rewire itself to learn and adapt.

The results offer insights into how bursts of neuronal activity that last only milliseconds trigger lasting changes in the brain, and open new fields of exploration for efforts to understand how the brain works.

“What we found is, in a sense, amazing. In response to visual stimulation, virtually every cell in the visual cortex is responding in a different way,” said co-senior author Michael Greenberg, the Nathan Marsh Pusey Professor of Neurobiology and chair of the Department of Neurobiology at HMS.

“This in essence addresses the long-asked question about nature and nurture: Is it genes or environment? It’s both, and this is how they come together,” he said.

One out of many

Neuroscientists have known that stimuli–sensory experiences such as touch or sound, metabolic changes, injury and other environmental experiences–can trigger the activation of genetic programs within the brain.

Composed of a vast array of different cells, the brain depends on a complex orchestra of cellular functions to carry out its tasks. Scientists have long sought to understand how individual cells respond to various stimuli. However, due to technological limitations, previous genetic studies largely focused on mixed populations of cells, obscuring critical nuances in cellular behavior.

To build a more comprehensive picture, Greenberg teamed with co-corresponding author Bernardo Sabatini, the Alice and Rodman W. Moorhead III Professor of Neurobiology at HMS, and Allon Klein, assistant professor of systems biology at HMS.

Spearheaded by co-lead authors Sinisa Hrvatin, a postdoctoral fellow in the Greenberg lab, Daniel Hochbaum, a postdoctoral fellow in the Sabatini lab and M. Aurel Nagy, an MD-PhD student in the Greenberg lab, the researchers first housed mice in complete darkness to quiet the visual cortex, the area of the brain that controls vision.

They then exposed the mice to light and studied how it affected genes within the brain. Using technology developed by the Klein lab known as inDrops, they tracked which genes got turned on or off in tens of thousands of individual cells before and after light exposure.

The team found significant changes in gene expression after light exposure in all cell types in the visual cortex–both neurons and, unexpectedly, nonneuronal cells such as astrocytes, macrophages and muscle cells that line blood vessels in the brain.

Roughly 50 to 70 percent of excitatory neurons, for example, exhibited changes regardless of their location or function. Remarkably, the authors said, a large proportion of non-neuronal cells–almost half of all astrocytes, for example–also exhibited changes.

The team identified thousands of genes with altered expression patterns after light exposure, and 611 genes that had at least two-fold increases or decreases.

Many of these genes have been previously linked to structural remodeling in the brain, suggesting that virtually the entire visual cortex, including the vasculature and muscle cell types, may undergo genetically controlled rewiring in response to a sensory experience.

There has been some controversy among neuroscientists over whether gene expression could functionally control plasticity or connectivity between neurons.

“I think our study strongly suggests that this is the case, and that each cell has a unique genetic program that’s tailored to the function of a given cell within a neural circuit,” Greenberg said.

Question goldmine

These findings open a wide range of avenues for further study, the authors said. For example, how genetic programs affect the function of specific cell types, how they vary early or later in life and how dysfunction in these programs might contribute to disease, all of which could help scientists learn more about the fundamental workings of the brain.

“Experience and environmental stimuli appear to almost constantly affect gene expression and function throughout the brain. This may help us to understand how processes such as learning and memory formation, which require long-term changes in the brain, arise from the short bursts of electrical activity through which neurons signal to each other,” Greenberg said.

One especially interesting area of inquiry, according to Greenberg, includes the regulatory elements that control the expression of genes in response to sensory experience. In a paper published earlier this year in Molecular Cell, he and his team explored the activity of the FOS/JUN protein complex, which is expressed across many different cell types in the brain but appears to regulate unique programs in each different cell type.

Identifying the regulatory elements that control gene expression is critical because they may account for differences in brain function from one human to another, and may also underlie disorders such as autism, schizophrenia and bipolar disease, the researchers said.

“We’re sitting on a goldmine of questions that can help us better understand how the brain works,” Greenberg said. “And there is a whole field of exploration waiting to be tapped.”

Source:

https://hms.harvard.edu/news/nature-meet-nurture

Tagged with:

About author

Related Articles