Breaking News
October 24, 2018 - Spectrum Pharmaceuticals Receives FDA Approval of Khapzory (levoleucovorin) for Injection
October 24, 2018 - Researcher uses smartphone to detect breast cancer gene
October 24, 2018 - Advanced breast cancer patients can benefit from immunotherapy-chemotherapy combination
October 24, 2018 - Stress related to social stigma negatively impacts mental health of autistic people
October 24, 2018 - New 17-item questionnaire may help detect GI disorders in children with autism
October 24, 2018 - 12% of frequent marijuana smokers experience cannabis withdrawal syndrome
October 24, 2018 - Immune therapy may be potential treatment option for patients with hard-to-treat ankylosing spondylitis
October 24, 2018 - Poor Experience With PCP Linked to Hospitalization in CKD
October 23, 2018 - Dummies not to blame for common speech disorder in kids
October 23, 2018 - The future of ethics and biomedicine: An interview
October 23, 2018 - X4 Pharmaceuticals announces clinical data of X4P-001-IO and Opdivo in patients with clear cell renal cell carcinoma
October 23, 2018 - FDA targets 465 websites that sell potentially dangerous, unapproved drugs
October 23, 2018 - New approach may lead to better diagnostic techniques for autoimmune disorders
October 23, 2018 - Innovative computer software sheds new light on genetic processes underlying deadly diseases
October 23, 2018 - Juul Drawing Lots of Teen Followers on Twitter
October 23, 2018 - WHO says Zika risk low in Pacific ahead of Meghan visit
October 23, 2018 - A deeper look at ‘Reflecting Frankenstein’
October 23, 2018 - Breastfeeding can have protective affect against high blood pressure in women, confirms study
October 23, 2018 - Epigenetic modifications may contribute to Alzheimer’s Disease
October 23, 2018 - Volunteering for peer counseling programs benefits people with lupus
October 23, 2018 - Cancer treatment may undergo a paradigm shift to immunotherapy soon
October 23, 2018 - Study uncovers new mechanism of action in a first-line drug for diabetes
October 23, 2018 - New type of molecule shows early promise against treatment-resistant prostate cancer
October 23, 2018 - Lancet publishes pioneering study of Aimovig’s efficacy in episodic migraine patients
October 23, 2018 - Scientists grow functioning human neural networks in 3D from stem cells
October 23, 2018 - Using mushrooms as a prebiotic may help improve glucose regulation
October 23, 2018 - New ENT clinic treats children in Zimbabwe
October 23, 2018 - CUIMC Celebrates 2018-2019, Issue 2
October 23, 2018 - Immunotherapy is better than chemotherapy as first-line treatment for advanced head and neck cancer
October 23, 2018 - Intake of painkillers during pregnancy linked to early puberty in future offspring
October 23, 2018 - ConnectToBrain project seeks to improve techniques for brain stimulation in current clinical use
October 23, 2018 - Polyganics begins first-in-human clinical trial of LIQOSEAL for reducing CSF leakage
October 23, 2018 - Gut bacterial community of healthy adults recovers after short-term exposure to broad-spectrum antibiotics
October 23, 2018 - Lowering systolic blood pressure does not damage the kidneys, shows study
October 23, 2018 - Incyte Announces Positive Data from Phase 2b Trial of Ruxolitinib Cream in Patients with Atopic Dermatitis
October 23, 2018 - Cardiovascular admissions more common among most deprived
October 23, 2018 - Targeted drug and hormone therapy combination extends breast cancer survival
October 23, 2018 - Map of human liver cells reveals molecular make-up of individual cells
October 23, 2018 - Drugs approved for breast cancer treatment are effective and well tolerated in men
October 23, 2018 - EKF introduces new hand-held lactate analyzer for rapid sports performance monitoring
October 23, 2018 - Researchers identify common genetic connection in lung conditions
October 23, 2018 - Forbius initiates Phase 2a trial evaluating efficacy, safety of AVID100 in patients with squamous NSCLC
October 23, 2018 - Immunotherapy achieves major pathological response in early-stage mismatch repair deficient colon cancer
October 23, 2018 - New discovery may lead to better treatment options for pancreatic cancer patients
October 23, 2018 - FDA Approves Dupixent (dupilumab) for Moderate-to-Severe Asthma
October 23, 2018 - Researchers identify immune culprits linked to inflammation and bone loss in gum disease
October 23, 2018 - Despite lower risk factors, black men have higher rates of recidivism
October 23, 2018 - Study finds why pregnant women in mainland China, Hong Kong and Taiwan prefer cesarean delivery
October 23, 2018 - AbbVie’s U-ACHIEVE Phase 2b/3 dose-ranging study improves outcomes in patients with ulcerative colitis
October 23, 2018 - NCI grant awarded to Abramson Cancer Center to study CAR T cells In solid tumors
October 23, 2018 - Scientists use electron microscope to study chemical transformation in catalytic cross-coupling reaction
October 23, 2018 - Research offers new hope to men who received childhood cancer treatment
October 23, 2018 - New medical navigation system receives international innovation award
October 23, 2018 - Adverse Childhood Experiences Tied to Burnout in BSN Students
October 23, 2018 - High levels of oral disease among elite athletes affecting performance
October 23, 2018 - Study examines effect of immediate vs delayed pushing during labor on delivery outcomes
October 23, 2018 - LU-RRTC to spearhead capacity-building efforts for racial and ethnic populations
October 23, 2018 - Maintenance therapy with olaparib improves progression-free survival in advanced ovarian cancer patients
October 23, 2018 - Organic food may protect against cancers finds study
October 23, 2018 - Interweaving anxiety disorder associated with stuttering remains unrecognized
October 23, 2018 - Cannabis oil shown to significantly improve Crohn’s disease symptoms
October 23, 2018 - Knowledge of sex differences in lower urinary tract may help stimulate breakthroughs in diagnosis, management
October 23, 2018 - Common antibodies associated with myocardial infarction
October 23, 2018 - Study reveals new treatment option for women with advanced breast cancer resistant to hormone therapy
October 23, 2018 - Brain’s ‘Self-Control’ Center May Be Key to Weight-Loss Success
October 23, 2018 - Prosthetic valve mismatches common in transcatheter valve replacement, ups risk of death
October 23, 2018 - Can virtual reality help people become more compassionate?
October 23, 2018 - Screen time eclipsed outdoor time for most students, shows study
October 23, 2018 - SLU researcher seeks to find solutions for ‘chemo brain’ symptoms and side effects of opioids
October 23, 2018 - Plastics now commonly found in human stools
October 23, 2018 - Zoledronic acid increases disease-free survival in premenopausal women with HR+ early breast cancer
October 23, 2018 - Cancer survivors at risk for heart failure during, after pregnancy
October 23, 2018 - Stanford project brings health education videos to mothers in South Africa
October 23, 2018 - HIV-infected Hispanics at higher risk of developing HPV-related cancers, finds study
October 23, 2018 - Politicians hop aboard ‘Medicare-for-all’ train, destination unknown
October 23, 2018 - Study suggests rising childhood obesity rates as cause for serious hip disease in adolescents
October 23, 2018 - Study highlights existence of barriers to early clinical trial access for adolescents and young adults
October 23, 2018 - Protein sequencing technique could revolutionize biomedical research
October 23, 2018 - Canon Medical to showcase world’s first Ultra-High Resolution CT system at ASTRO 2018
October 23, 2018 - Spectrum Pharmaceuticals Announces Release of Updated Poziotinib Data From MD Anderson Phase 2 Study in Non-Small Cell Lung Cancer Patients
New kind of homing beacon targets cancerous cells and other diseases

New kind of homing beacon targets cancerous cells and other diseases

image_pdfDownload PDFimage_print
The CD19 molecule on a leukemia cell is like a tiny radio broadcasting to the world, “I’m leukemia. Come and get me.” Credit: Kevin Craft

Leukemia is a deadly cancer in which rogue white blood cells roam the bloodstream, slowly killing the body that gave them life.

But this insidious killer has an Achilles’ heel. Many leukemia cells are betrayed by a molecule on their exterior surfaces known as CD19.

When activated, CD19 will kill the cancer cell to which it is attached. To cancer biochemists, CD19 is like a tiny radio signal broadcasting to the world, “I’m leukemia. Come and get me.” But when a body is without the immune cells equipped to hear CD19’s siren song, the leukemia is free to carry on its lethal business undeterred. So, researchers created leukemia-specific human immune cells that track down and kill any leukemia cell exhibiting the CD19 signal.

Developing better hunter-killer cells to target cancers is part of what goes on in the lab of Stanley Qi, assistant professor of bioengineering and of chemical systems biology. In a recent article in Nature Communications, Qi and his team explained how they used the CRISPR gene-editing technique to equip certain immune cells with a homing beacon to target leukemia.

Though this is still basic research, Qi’s approach could one day lead to new ways to treat the roughly 170,000 Americans who were diagnosed leukemia and other blood-related cancers last year.

But leukemia is just the beginning. Cancers of the blood system account for a mere fraction of all cancers, most of which are solid tumors—clumps of cells that grow inappropriately in breasts, ovaries, lungs and prostate, for example. Solid tumors take refuge within a complex microenvironment of molecules, hormones and growth factors that help these unwanted cells spread and suppress the immune system agents that seek to kill the tumor.

Qi hopes to prove that his technique could work on all cancers because it targets a beacon found not just on leukemia, but on almost every type of cell in the body, including solid cancers. That is why Qi’s team is so excited. By using CRISPR to hack ever more precisely into the genome, Qi believes it may one day be possible to bioengineer therapeutic agents to dial in on not just cancers, but other diseases that use the same radio-like signaling that has already used to attack leukemia.

Hacking biochemical communications

Qi’s team describes used the CRISPR gene-editing technique to modify cellular receivers known as G protein-coupled receptors—GPCRs for short.

One of the largest and most important families of chemical receptors in human physiology, GPCRs are like cellular antennae, constantly searching for biochemical signals that allow cells to communicate and to function together as tissues. When antennae molecules recognize a particular signal—a molecule like CD19, for instance—they initiate a cascade of cellular communications with the nucleus that triggers a broad array of genetic outcomes ranging from immune responses to chemical generation to cell reproduction.

When GPCRs detect opiates, for instance, they instruct cells to flood the body with pleasure-enhancing, painkilling dopamine. As such, GPCRs are the gateways—the input/output devices—by which various important hormones, proteins, fatty acids and drugs communicate on a cellular level.

GPCRs are found on the surface of almost every cell type in the body. Of the 20,000 or so genes that make up the human genome, 800 alone are dedicated to distinct GPCR variations. “That’s a huge proportion of our genetic code,” Qi says, noting that some 40 percent of all drugs already on the market today target GPCRs.

Therein lies the excitement in this research. By developing a technique that can turn the plethora of GCPRs into tattle tales for different illnesses and dysfunctions, Qi’s team has developed a platform for hacking into the body’s biochemical communications network to battle disease. In the cancer example described above, the team has been able to recalibrate the GPCR antennae to home in on key molecules present in the tumor microenvironment.

Doing the ChaCha

Qi has dubbed their variation of the CRISPR technique “ChaCha” for the way it involves a dance of two molecules to modify the genetic code of GPCRs. “With ChaCha we can now create GPCR antenna devices that recognize virtually any molecule imaginable, including hormones, cellular growth factors and synthetic drugs,” he says.

While there are existing CRISPR techniques that target GPCRs, ChaCha has two key advantages. First, ChaCha is dose dependent. A GPCR trained to recognize a specific hormone, for instance, would be able to modulate its response based on the relative presence of that hormone—more hormone would mean a greater response, and vice versa. “This is a programmable logic by which cells can figure out what their charge is and when they have completed an assigned task,” he notes. “We’re trying to design smarter cells.”

The second advantage is that ChaCha is reversible. A cell modified for a specific task could be returned to its normal state once its duty was complete.

Early clinical trials have been promising and are already leading to new leukemia therapies. What has been most revolutionary, however, is a growing ability to use living cells as therapies, opening a world beyond traditional chemotherapies.

Qi and collaborators are excited by the broader prospect of adapting their genetic approach to an array of diseases ranging from solid tumors to neurological disorders such as Parkinson’s disease and autoimmune disorders like lupus.

Asked about next steps for ChaCha, Qi says he plans to continue to test the bounds of his technique to make it easier to create cells to attack disease or to conjure desirable chemicals in the body. There has already been commercial interest in the approach. “We are just at the beginning of a very exciting period in predictably designing living cells for medical uses,” Qi says. “Now we’re moving quickly and in the right direction.”


Explore further:
Clinical trial suggests new cell therapy for relapsed leukemia patients

Provided by:
Stanford University

Tagged with:

About author

Related Articles