Breaking News
July 17, 2018 - Advanced MRI technique predicts risk of disease progression in MS
July 17, 2018 - Health Tip: Microwave Safely – Drugs.com MedNews
July 17, 2018 - New target for treating heart failure identified
July 17, 2018 - Biodesign fellows simplify heart rhythm monitoring
July 17, 2018 - Study reveals new risk genes for allergic rhinitis
July 17, 2018 - Community college education can increase physician diversity and access to primary care
July 17, 2018 - Inflection Biosciences’ dual mechanism inhibitor shows promise as treatment for CLL
July 17, 2018 - Researchers uncover how cells invite corrupted proteins inside
July 17, 2018 - Studies show HORIBA’s new hematology analyzer improves POCT and care of oncology patients
July 17, 2018 - New website aims to make yoga safer for everyone
July 17, 2018 - Long-term survival worse for black survivors of in-hospital cardiac arrest
July 17, 2018 - Stanford data analyst’s childhood inspires his research: A Q&A
July 17, 2018 - Preventability of hospital readmissions changes over time, study reveals
July 17, 2018 - Nursing notes can help predict if ICU patients will survive
July 17, 2018 - Okayama University research could improve prognosis of diabetic kidney disease
July 17, 2018 - Homogenous BTK occupancy assay used in tirabrutinib clinical studies
July 17, 2018 - Study identifies new genes linked to heart function and development
July 17, 2018 - NeuroTrauma Sciences and Henry Ford join hands to advance exosome technology
July 17, 2018 - Improved methods to measure enterococci concentrations in recreational water
July 17, 2018 - White adolescent boys experiencing early puberty have high risk for substance use
July 17, 2018 - Celgene and Acceleron Announce Luspatercept Achieved Primary and All Key Secondary Endpoints in Phase III ‘BELIEVE’ Study in Adults with Transfusion-Dependent Beta-Thalassemia
July 17, 2018 - Roots of leukemia reveal possibility of predicting people at risk
July 17, 2018 - Summer med program embraces low-income students’ potential
July 17, 2018 - New research lays foundation to create standards for RNA sequencing
July 17, 2018 - CRISPR/Cas9 gene editing can cause greater genetic damage than previously thought
July 17, 2018 - Democrats rally against threats to the ACA to block Trump’s Supreme Court nominee
July 17, 2018 - Staggering prices slow insurers’ coverage of CAR-T cancer therapy
July 17, 2018 - How proteins involved in neurodegeneration enter cells
July 17, 2018 - New super-resolution ‘nanoscope’ provides insight into progression of Alzheimer’s disease
July 17, 2018 - FDA Advisory Committee Endorses the Effectiveness and Safety of Single-Dose Tafenoquine for the Radical Cure of P. vivax Malaria
July 17, 2018 - Uncovering the evolutionary history of IBD-associated colorectal cancer
July 17, 2018 - Is nutrition research dependable? Stanford’s John Ioannidis weighs in
July 17, 2018 - New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions
July 17, 2018 - Plant-based products fail to have positive impact on blood pressure during clinical studies
July 17, 2018 - Electronic system to speed up facial pain diagnosis may improve quality of life and save money
July 17, 2018 - Study delves into the role played by Protein Kinase C in synaptic plasticity
July 17, 2018 - Women Often Unaware of Their Hospital’s Religious Affiliation
July 17, 2018 - New AASM guideline recommends use of actigraphy for sleep disorders
July 17, 2018 - CRISPR editing reduces repetitive behavior in mice with a form of autism
July 17, 2018 - Scientists use magnets to detect cancer
July 17, 2018 - Microfluidic chip to detect sepsis proves successful in clinical study
July 17, 2018 - Research provides better understanding of mechanisms underlying memory storage
July 17, 2018 - A Multi-Modal Approach for the Early Detection of Breast Cancer
July 17, 2018 - Mailing colorectal cancer tests to patients increases screening rates, report researchers
July 17, 2018 - Scientists find possible sources of medicinal and antimicrobial drugs
July 17, 2018 - Molecules formed when the body metabolizes omega-3 fatty acids may inhibit cancer
July 17, 2018 - Efficient communication between hospitals improves patient safety and reduces mortality
July 17, 2018 - Study highlights potential of fetal gene therapy to prevent lethal neurodegenerative disease
July 17, 2018 - For Americans, in Science They Trust
July 17, 2018 - Combating HIV/AIDS | NIH MedlinePlus the Magazine
July 17, 2018 - Study shows minorities widely underrepresented in autism diagnoses
July 17, 2018 - Multigene testing replacing BRCA tests for breast cancer risk | News Center
July 17, 2018 - Pre-clinical pilot study shows promising results of ‘concussion pill’
July 17, 2018 - Researchers reduce size of tumors in mice by artificially activating the brain’s reward system
July 17, 2018 - New study documents symptoms of people before they acquire multiple sclerosis
July 17, 2018 - Researchers discover why CRISPR gene editing sometimes fails
July 17, 2018 - New finding may hold key to better understand the complexities of neurological disorders
July 17, 2018 - The Current issue of “The view from here” is concerned with Novel Targets.
July 17, 2018 - Fighting the Flu with a Universal Vaccine
July 17, 2018 - Key social reward circuit in the brain impaired in kids with autism | News Center
July 17, 2018 - Insight into causes, types and treatment of aphasia
July 16, 2018 - Quark Pharmaceuticals, Inc Announces First Patient Dosed in Phase 3 Clinical Trial of QPI-1002 for Prevention of Acute Kidney Injury Following Cardiac Surgery
July 16, 2018 - NSAIDs shown to have causal role in cardiovascular risk of patients with osteoarthritis
July 16, 2018 - PET scan tracer predicts success of cancer ‘vaccine’ | News Center
July 16, 2018 - Parents struggle with what to do when their child has headache, shows study
July 16, 2018 - Outrageous or overblown? HHS announces another round of ACA navigator funding cuts
July 16, 2018 - Weight loss surgery may impact individual’s risk of developing cancer, shows study
July 16, 2018 - Alexion Submits Application for Priority Review and Approval of ALXN1210 as a Treatment for Patients with Paroxysmal Nocturnal Hemoglobinuria (PNH) in the U.S.
July 16, 2018 - Restoring epigenetic balance reinstates memory in flies with Alzheimer’s disease symptoms
July 16, 2018 - Magnetized wire could be used to detect cancer in people | News Center
July 16, 2018 - Non-surgical management found to be feasible option for penetrating kidney trauma
July 16, 2018 - California clinic screens asylum seekers for honesty
July 16, 2018 - FDA Approves Xtandi (enzalutamide) for the Treatment of Men with Non-Metastatic Castration-Resistant Prostate Cancer (CRPC)
July 16, 2018 - Can nanotechnology help treat Alzheimer’s?
July 16, 2018 - Researchers identify protein essential for making stem cells | News Center
July 16, 2018 - Severe childhood infections linked with lower school achievement in adolescence
July 16, 2018 - Radiologist discusses causes, treatments of varicose veins
July 16, 2018 - Researchers develop nanostructured surface to accelerate wound healing after dental implants
July 16, 2018 - New non-invasive procedure to reposition kidney stones could benefit astronauts
July 16, 2018 - Attending Surgeon Influences Genetic Testing in Breast Cancer
New technique enables 3D printing of complex nanoscale metal structures

New technique enables 3D printing of complex nanoscale metal structures

image_pdfDownload PDFimage_print

For the first time, it is possible to create complex nanoscale metal structures using 3-D printing, thanks to a new technique developed at Caltech.

The process, once scaled up, could be used in a wide variety of applications, from building tiny medical implants to creating 3-D logic circuits on computer chips to engineering ultralightweight aircraft components. It also opens the door to the creation of a new class of materials with unusual properties that are based on their internal structure. The technique is described in a study that will be published in Nature Communications on February 9.

In 3-D printing–also known as additive manufacturing–an object is built layer by layer, allowing for the creation of structures that would be impossible to manufacture by conventional subtractive methods such as etching or milling. Caltech materials scientist Julia Greer is a pioneer in the creation of ultratiny 3-D architectures built via additive manufacturing. For instance, she and her team have built 3-D lattices whose beams are just nanometers across–far too small to be seen with the naked eye. These materials exhibit unusual, often surprising properties; Greer’s team has created exceptionally lightweight ceramics that spring back to their original shape, spongelike, after being compressed.

Greer’s group 3-D prints structures out of a variety of materials, from ceramics to organic compounds. Metals, however, have been difficult to print, especially when trying to create structures with dimensions smaller than around 50 microns, or about half the width of a human hair.

The way 3-D printing works at the nanoscale is that a high-precision laser zaps the liquid in specific locations of the material with just two photons, or particles of light. This provides enough energy to harden liquid polymers into solids, but not enough to fuse metal.

“Metals don’t respond to light in the same way as the polymer resins that we use to manufacture structures at the nanoscale,” says Greer, professor of materials science, mechanics, and medical engineering in Caltech’s Division of Engineering and Applied Science. “There’s a chemical reaction that gets triggered when light interacts with a polymer that enables it to harden and then form into a particular shape. In a metal, this process is fundamentally impossible.”

Greer’s graduate student Andrey Vyatskikh came up with a solution. He used organic ligands–molecules that bond to metal–to create a resin containing mostly polymer, but which carries along with it metal that can be printed, like a scaffold.

In the experiment described in the Nature Communications paper, Vyatskikh bonded together nickel and organic molecules to create a liquid that looks a lot like cough syrup. They designed a structure using computer software, and then built it by zapping the liquid with a two-photon laser. The laser creates stronger chemical bonds between the organic molecules, hardening them into building blocks for the structure. Since those molecules are also bonded to the nickel atoms, the nickel becomes incorporated into the structure. In this way, the team was able to print a 3-D structure that was initially a blend of metal ions and nonmetal, organic molecules.

Vyatskikh then put the structure into an oven that slowly heated it up to 1,000 degrees Celsius (around 1,800 degrees Fahrenheit) in a vacuum chamber. That temperature is well below the melting point of nickel (1,455 degrees Celsius, or about 2,650 degrees Fahrenheit) but is hot enough to vaporize the organic materials in the structure, leaving only the metal. The heating process, known as pyrolysis, also fused the metal particles together.

In addition, because the process vaporized a significant amount of the structure’s material, its dimensions shrank by 80 percent, but it maintained its shape and proportions.

“That final shrinkage is a big part of why we’re able to get structures to be so small,” says Vyatskikh, lead author on the Nature Communications paper. “In the structure we built for the paper, the diameter of the metal beams in the printed part is roughly 1/1000th the size of the tip of a sewing needle.”

Greer and Vyatskikh are still refining their technique; right now, the structure reported on in their paper includes some voids left behind by the vaporized organic materials as well as some minor impurities. Also, if the technique is to be of use to industry, it will need to be scaled up to produce much more material, says Greer. Although they started with nickel, they are interested in expanding to other metals that are commonly used in industry but are challenging or impossible to fabricate in small 3-D shapes, such as tungsten and titanium. Greer and Vyatskikh are also looking to use this process to 3-D print other materials, both common and exotic, such as ceramics, semiconductors, and piezoelectric materials (materials with electrical effects that result from mechanical stresses).

Source:

http://www.caltech.edu/news/new-process-allows-3-d-printing-nanoscale-metal-structures-81373

Tagged with:

About author

Related Articles