Breaking News
April 20, 2018 - Experimental compound reduces destructive inflammation to improve stroke outcome
April 20, 2018 - The May issue of Drug Discovery Today is a Special Issue and will be published very soon
April 20, 2018 - Larger families linked to heightened tooth loss risk for moms
April 20, 2018 - Scientists develop tiny fluorescent probe that seeks out GLUT5 and detects cancer cells
April 20, 2018 - The Swedish Childhood Cancer Foundation awards grant to KI researchers
April 20, 2018 - AMSBIO’s MC-Easy minicircle technology allows sustained transgene expression in quiescent cells and tissues
April 20, 2018 - Researchers use optogenetics to treat chronic pain
April 20, 2018 - Discovery of 100 new genes may aid research into pigmentation
April 20, 2018 - AYOXXA introduces new LUNARIS Mouse 12-Plex Th17 Kit for quantitative analysis of Th17 cell biology
April 20, 2018 - Compound derived from immune cells treats psoriasis in mice
April 20, 2018 - GABA-transaminase deficiency – Genetics Home Reference
April 20, 2018 - Key heart risks decline for older Americans
April 20, 2018 - UD professor wins $2.3 million grant from NIH for research on Achilles tendinopathy
April 20, 2018 - Researchers discover unique protein in malaria parasite that could be new drug target
April 20, 2018 - Bio-Techne expands automation capabilities of popular RNAscope ISH technology
April 20, 2018 - Smartphone app effective in promoting proper child car seat practices
April 20, 2018 - Nutraceuticals could play an important role in preventing heart disease
April 20, 2018 - FDA Alert: Certain Kratom-Containing Powder Products by Viable Solutions: Recall -Possible Salmonella Contamination
April 20, 2018 - What is heart failure?
April 20, 2018 - TIP Biosystems introduces handheld UV-Visible spectrophotometer for photometric measurements
April 20, 2018 - Inactivity of astronauts during spaceflights may have more pronounced effect on skeletal muscle than hypoxia
April 20, 2018 - New SIDS Info app seeks to reduce infant sleep-related deaths
April 20, 2018 - Wide-scale distribution of naloxone effectively prevents overdose deaths, study finds
April 20, 2018 - Triple-negative breast cancer found to be chemoresistant prior to treatment
April 20, 2018 - ACL tears occur the same way in women and men, study finds
April 20, 2018 - UT Southwestern researchers identify 170 potential therapeutic targets for lung cancer
April 20, 2018 - Finding the ‘keyhole’ to beat obesity at the cellular level
April 20, 2018 - Long-term exposure to cold temperatures reduces diabetes and obesity, shows study
April 20, 2018 - Metabolic Syndrome Common With Chronic Hep B Infection
April 20, 2018 - Tracking quality of life during prostate cancer treatment
April 20, 2018 - Study shows presence of beta-amyloid dimers in the brains of Alzheimer’s patients
April 20, 2018 - Researchers identify link between physical inactivity and increased risk of dying from cancer
April 20, 2018 - Breathtaking evolution amongst Indonesian tribe
April 20, 2018 - Study shows testosterone deficiency in men is associated with chronic diseases
April 20, 2018 - Simple one-page form helps improve satisfaction of patients with care
April 20, 2018 - Researchers evaluate accuracy of simple blood test to predict lung cancer
April 20, 2018 - Study looks at sperm producing ability in testicular cancer patients
April 20, 2018 - Exercise In, Vitamin D Out for Preventing Falls: U.S. Panel
April 20, 2018 - Skin cancers associated with decreased risk of developing AD
April 20, 2018 - Preserving fertility during chemotherapy
April 20, 2018 - Teva and Procter & Gamble Company terminate PGT Healthcare partnership
April 20, 2018 - People diagnosed with traumatic brain injury may have increased risk of Parkinson’s disease, shows study
April 20, 2018 - Researchers use smartphone to diagnose people infected with Loa loa worm
April 20, 2018 - College students with autism have high rate of suicidal thoughts
April 20, 2018 - Study sheds light on how the HSC niche is maintained
April 20, 2018 - Drug test spurs frank talk between hypertension patients and doctors
April 19, 2018 - Low-cost deworming drug improves female farmers’ physical fitness
April 19, 2018 - Genome editing identifies neural circuit behind leptin’s anti-obesity and anti-diabetes effects
April 19, 2018 - Many European countries lack comprehensive policy to eliminate viral hepatitis
April 19, 2018 - Young people with ADHD ‘more likely’ to come from deprived neighbourhoods
April 19, 2018 - SLU professor discovers new biomarkers for chlorine gas exposure
April 19, 2018 - Study proposes new mechanism that may contribute to gender differences in weight control
April 19, 2018 - Sleep restriction therapy does not interfere with insomnia patient’s driving ability, research shows
April 19, 2018 - Deep brain stimulation offers relief to UTHealth patient with treatment-resistant depression
April 19, 2018 - Study shows fatty fish and camelina oil boost HDL and IDL cholesterol
April 19, 2018 - FDA Alert: Euphoric Capsules by Epic Products: Recall
April 19, 2018 - Researchers identify peptide produced during cartilage deterioration as a potential source of osteoarthritis pain
April 19, 2018 - New breakthrough may allow scientists to orchestrate tissue regeneration in humans
April 19, 2018 - SYGNIS AG introduces new TruePrime apoptotic cell free DNA amplification kit
April 19, 2018 - Innovative device shows promise in capturing and releasing circulating tumor cells
April 19, 2018 - Researchers shed light on role of striosomal neurons in reinforcement learning
April 19, 2018 - Genetic make-up impacts long-term effectiveness of phobia treatment
April 19, 2018 - Novel biomarker can distinguish malignant lung nodules
April 19, 2018 - Study reports promising novel approach to treat therapy resistant pediatric brain tumors
April 19, 2018 - One-Hour Plasma Glucose Useful Predictor of Diabetic Retinopathy
April 19, 2018 - Hydroxychloroquine no more effective than placebo for relieving osteoarthritis hand pain
April 19, 2018 - Transplanted livers have a protective effect and reduce potential for organ rejection
April 19, 2018 - Researchers develop new method to study activity of inflammatory cells
April 19, 2018 - Researchers discover highly antibiotic resistant superbugs in Gulf States
April 19, 2018 - Smart-tooth technology shows promise in detecting certain diseases in high-risk patients
April 19, 2018 - Interaction between dioxin and HLA gene variant activates events associated with rheumatoid arthritis
April 19, 2018 - Eyes of adolescents could be associated with increased risk of cardiovascular disease in later life
April 19, 2018 - U.S. Women Less Likely Than Men to Get Statins After Heart Attack
April 19, 2018 - Health Canada grants cannabis cultivation license to High Park Farms
April 19, 2018 - Atypical brain development observed in preschoolers with ADHD symptoms
April 19, 2018 - SC Johnson releases annual Sustainability Report
April 19, 2018 - Positive attitudes about aging reduce risk of dementia in older adults
April 19, 2018 - Environmental pollutants found to worsen rheumatoid arthritis
April 19, 2018 - UT Southwestern scientists discover protein linked to metastatic breast cancer
April 19, 2018 - Study highlights need for further evidence to improve symptom management in end of life care
Oncolytic virus alerts the immune system to attack tumors

Oncolytic virus alerts the immune system to attack tumors

image_pdfDownload PDFimage_print

A new UC San Francisco study has shown that a cancer-killing (“oncolytic”) virus currently in clinical trials may function as a cancer vaccine – in addition to killing some cancer cells directly, the virus alerts the immune system to the presence of a tumor, triggering a powerful, widespread immune response that kills cancer cells far outside the virus-infected region.

Using novel approaches to examine exactly how oncolytic viruses attack tumors, the new study – published online in early form on December 19, 2017, and in print in the February 15, 2018, issue of Cancer Research – provided surprising insights about how a viral infection can cooperate with the immune system to attack cancer cells. The study highlights an opportunity to combine this form of therapy with cancer immunotherapy drugs such as checkpoint inhibitors, which unleash the immune system’s full cancer-fighting power, the researchers say.

The idea that viruses could fight cancer goes back to the early 20th century, when doctors noted that cancer patients sometimes experienced dramatic remission after getting viral infections. Researchers have been developing oncolytic viruses since the 1980s, but following the U.S. Food and Drug Administration’s 2015 approval of Amgen’s Imlygic (T-Vec) as the first oncolytic viral therapy in the U.S., such viruses have become a closely watched area of therapeutic development.

However, researchers are still trying to understand the fundamentals of how viral therapies actually kill cancer cells, and how to optimize their effects. In different contexts, viruses appear capable of attacking tumors in a number of different ways – by directly infecting them, by releasing tumor proteins that trigger a broad immune response against the cancer, and by damaging the blood supply tumors need to survive.

To better understand the underlying mechanisms of these viral therapies, a collaboration was forged between UCSF vascular researcher Donald McDonald, MD, PhD, and researchers at San Francisco-based biotech SillaJen Biotherapeutics Inc. (formerly Jennerex Biotherapeutics, Inc.), a subsidiary of SillaJen, Inc., headquartered in Korea.

SillaJen is developing an oncolytic viral therapy called Pexa-Vec, currently in phase III and phase Ib/II clinical trials for use against primary liver and colorectal cancers, respectively. Pexa-Vec is an engineered virus based on the harmless vaccinia cowpox virus – also the basis for the original smallpox vaccine. Early observations suggesting that the virus might attack cancer in part by damaging blood vessels that feed tumor growth led the SillaJen team to strike up a collaboration with McDonald, an expert in tumor vasculature, to investigate the virus’s mechanism of action in animal models.

“This got my attention in part because this virus could be given systemically by intravenous injection, in contrast to most oncolytic viruses that are injected into the tumor itself, which obviously limits their therapeutic potential against cancers that are inaccessible or have spread to multiple sites in the body,” said McDonald, who is a member of the UCSF Helen Diller Family Comprehensive Cancer Center and the Cardiovascular Research Institute at UCSF.

The Pexa-Vec virus was originally developed by Michael Mastrangelo, MD, and Edmund Lattime, PhD, of Thomas Jefferson University in Philadelphia, who engineered the harmless vaccinia virus to infect only cancer cells and other rapidly dividing cells, as well as to stimulate immune activity, in hopes of boosting the immune response to tumors.

To study how the modified virus attacks tumors, researchers in the McDonald lab injected it intravenously into mice genetically modified to develop neuroendocrine pancreatic cancer. They found that the virus failed to infect healthy organs or make the animals ill, but succeeded in infecting blood vessels within tumors. These initial infections caused the vessels to leak and expose the tumor cells to the virus. In these experiments, the virus managed to infect and destroy only a small proportion of tumor cells directly, the researchers found, but within five days of the initial infection, the rest of the tumor began to be killed by a powerful immune reaction.

“At first small spots of the tumor were infected, but then most of the tumor started to die,” McDonald said. “We were able to show that while only about five percent of cells were infected by the virus, the number of cells that were killed was more than ten times higher. As far as I know, no one has ever done this kind of analysis.”

The researchers found that by killing some tumor cells directly, the viral infection exposed tumor proteins that could be detected by the immune system, triggering an immune attack on the rest of the tumor. The researchers demonstrated this by temporarily getting rid of the immune system’s cancer-killing cells, called CD8+ or cytotoxic T cells, and showing that without these cells, the virus killed only the initial five percent of cancer cells.

McDonald’s team wondered whether they could improve the efficacy of the virus by adding in a second drug called Sutent (sunitinib) that blocks blood vessel growth and alters immune function. The combination worked, with significantly greater tumor killing than with the virus alone. When the researchers examined the tumors, they discovered that the second drug acted by making the immune system hyper-alert to tumor proteins released by the viral infection, rather than through effects on tumor blood vessels

This finding suggests that pairing Pexa-Vec’s ability to awaken the immune system to previously ignored signs of cancer with the newest generation of checkpoint inhibitors, which act by unleashing the immune system’s full force, might be an extremely potent combination therapy.

“The question with immunotherapy has always been – why doesn’t the immune system naturally detect and attack cancer cells?” McDonald said. “It seems like these viruses are like setting off a bomb that jars the immune system. The infection releases tumor antigens in a way that jump-starts the immune response.”

In an effort to further exploit the potential of Pexa-Vec to activate the immune system to fight cancer, as seen in McDonald’s preclinical data, SillaJen recently announced a new clinical trial in collaboration with New York-based Regeneron Inc. to test Pexa-Vec and REGN2810, a PD-1 checkpoint inhibitor, in combination against renal cell carcinoma, and recently signed a sponsored research agreement with UCSF to enable joint support of parallel preclinical experiments by McDonald’s team.

“The preclinical work being done by the McDonald lab has been extremely informative in helping us understand that Pexa-Vec is working like a vaccine to sensitize the immune system to attack cancer,” said James Burke, CMO of SillaJen Biotherapeutics. “Our ongoing collaboration will help us understand how best to combine Pexa-Vec with immune-modulation such as anti-PD1 antibody therapy to maximize anti-tumor immune response. If the virus is igniting a fire within the tumor, we want to see if we can use these immune modulators to pour gas on the flames.”

Source:

https://www.ucsf.edu/news/2018/02/409851/cancer-killing-virus-acts-alerting-immune-system

Tagged with:

About author

Related Articles