Breaking News
December 11, 2018 - Increasing mental health problems related to drug use in over 55’s
December 11, 2018 - High-intensity interval exercise could help combat cognitive dysfunction in obese people
December 11, 2018 - Annual flu shot can save lives of heart failure patients
December 11, 2018 - Recommendations Developed for Psoriatic Arthritis Treatment
December 11, 2018 - Genetic analysis links obesity with diabetes, coronary artery disease
December 11, 2018 - Study shows that having genetic information can affect how the body responds
December 11, 2018 - UNAIDS Report: 9 Million Are Likely HIV Positive And Don't Know It
December 11, 2018 - Lund University researchers succeed in obtaining dendritic cells by direct reprogramming
December 11, 2018 - Breast tumors recruit bone marrow cells to boost their growth, study reveals
December 11, 2018 - Updated breast cancer screening guideline highlights importance of shared decision-making
December 11, 2018 - EHR-related stress associated with physician burnout
December 11, 2018 - AHA: 12-Year-Old Heart Defect Survivor Inspires NFL Player’s Foundation
December 11, 2018 - Breast cancer patients who take heart drug with trastuzumab have less heart damage
December 11, 2018 - Providing aid to those humans – and animals – affected by the California fires
December 11, 2018 - Even without proof, CBD is finding a niche as a cure-all
December 11, 2018 - Drawing leads to better memory than writing
December 11, 2018 - Researchers report novel findings on plant hormone
December 10, 2018 - A Tale of Two Labels
December 10, 2018 - Triple combination cancer immunotherapy improves outcomes in preclinical melanoma model
December 10, 2018 - A 14-year-old explains what it’s like to get a new heart
December 10, 2018 - Team Players Honored with 2018 Baton Awards
December 10, 2018 - Global report highlights how the changing world is affecting children’s physical activity levels
December 10, 2018 - Genes play a role in physical activity and sleep
December 10, 2018 - DDT in Alaskan fish shown to increase risk of cancer
December 10, 2018 - Laws to curb use of cell phones have greatly reduced fatalities for motorcyclists
December 10, 2018 - Argenx Provides Detailed Data from Phase 2 Clinical Trial of Efgartigimod in Immune Thrombocytopenia and Phase 1/2 Clinical Trial of Cusatuzumab in Acute Myeloid Leukemia
December 10, 2018 - University of Maryland doctors treat first breast cancer patients with GammaPod radiotherapy
December 10, 2018 - The heartbeat seat: Demoing new well-being technologies in a car
December 10, 2018 - Leading Cancer Researcher to Direct Herbert Irving Comprehensive Cancer Center
December 10, 2018 - Researchers explore how glial cells develop in the brain from neural precursor cells
December 10, 2018 - Study compares pain-related diagnoses in First Nations and non-First Nations children, youth
December 10, 2018 - Experts address sleep disorders following traumatic brain injury
December 10, 2018 - Scientists find answers to how cancer spreads
December 10, 2018 - Study explores why older people read more slowly
December 10, 2018 - Smart life-collar could save lives of young children
December 10, 2018 - Asbestos found in most NHS hospitals finds BBC inquiry
December 10, 2018 - Researchers use new technique to probe hydrogen bonds
December 10, 2018 - Music improves social communication in autistic children
December 10, 2018 - Some Brain Tumors May Respond to Immunotherapy, New Study Suggests
December 10, 2018 - Banning junk food ads to combat childhood obesity
December 10, 2018 - Skin Autofluorescence Predicts T2DM, Heart Disease, Mortality
December 10, 2018 - Largest autism sequencing study to date yields 102 genes associated with ASD
December 10, 2018 - Statins associated with low risk of side effects
December 10, 2018 - Episodic memory tests help in predicting brain atrophy and Alzheimer’s disease
December 10, 2018 - Study explores how schools address adolescent self-harming practices
December 10, 2018 - Pregnancy in adolescence linked to increased risks of complications in young mothers
December 10, 2018 - Risk Analysis publishes special issue on communicating about Zika virus
December 10, 2018 - Botox May Help Prevent Post-Op A-Fib
December 10, 2018 - African-American mothers rate boys higher for ADHD
December 10, 2018 - Graphic warning labels cancel out cigarettes’ appeal to young people
December 10, 2018 - Australian researchers to study gas inhalational anaesthetic and likelihood of cancer return
December 10, 2018 - Individual neurons located within the brain have implications for psychiatric diseases
December 10, 2018 - Researchers improve bariatric surgery scoring system to extend prediction time for diabetic remission
December 10, 2018 - HPV type 16 or 18 associated with cervical cancer risk in young women
December 10, 2018 - Cervical cancer risk is higher in women with positive HPV, but no cellular abnormalities
December 10, 2018 - Combo therapy not needed if low RA disease activity achieved
December 10, 2018 - Novel therapeutic targets based on biology of aging show promise for Alzheimer’s disease
December 10, 2018 - UC San Diego professor receives NCI Outstanding Investigator Award for cancer research
December 10, 2018 - Study evaluates placental mesenchymal stem cell sheets for myocardial repair and regeneration
December 10, 2018 - Blueprint Medicines Announces Updated Results from Ongoing EXPLORER Clinical Trial of Avapritinib Demonstrating Broad Clinical Activity and Significant Symptom Reductions in Patients with Systemic Mastocytosis
December 10, 2018 - Study clarifies ApoE4’s role in dementia
December 10, 2018 - Eating disorders now a top priority with Australian Government
December 10, 2018 - Neuronal activity in the brain allows prediction of risky or safe decisions
December 10, 2018 - FDA Alerts Health Care Professionals and Patients Not to Use Drug Products Intended to be Sterile from Promise Pharmacy
December 10, 2018 - Improving dementia care and treatment saves thousands of pounds in care homes
December 10, 2018 - Heroin-assisted treatment can offer benefits, reduce harms
December 10, 2018 - People covered by Michigan’s expanded Medicaid program report improvements in health, finds study
December 10, 2018 - Hazelnuts improve micronutrient levels in older adults
December 9, 2018 - History of Partner Violence Tied to Menopause Symptoms
December 9, 2018 - Clean Up Safely After a Disaster|Natural Disasters and Severe Weather
December 9, 2018 - Drug wholesalers drove fentanyl’s deadly rise, report concludes
December 9, 2018 - Deprescribing could help manage polypharmacy in older adults
December 9, 2018 - Retraction of article “Joy of cooking too much” from journal
December 9, 2018 - FDA Warns of Rare Stroke Risk With MS Drug Lemtrada (Alemtuzumab)
December 9, 2018 - Feds say heroin, fentanyl remain biggest drug threat to US
December 9, 2018 - Eliminating microglia can reverse some aspects of stress sensitization, study shows
December 9, 2018 - New genetic insight could help treat rare debilitating heart and lung condition
December 9, 2018 - MiRagen Therapeutics Announces Final Safety, Biodistribution and Clinical Efficacy Data From Phase 1 Cobomarsen Clinical Trial in Patients With Mycosis Fungoides
December 9, 2018 - Work with your doctor to weigh pros, cons of treatment options for hyperthyroidism
December 9, 2018 - CWRU researcher secures $14.6 million funding for genetic study into Alzheimer’s disease
Heart researchers develop a new, promising imaging technique for cardiac arrhythmias

Heart researchers develop a new, promising imaging technique for cardiac arrhythmias

image_pdfDownload PDFimage_print
Maelstroms in the heart
From ultrasound images (left), Max Planck researchers have reconstructed how the heart muscle contracts vortex-like (centre) in cardiac arrhythmia. This also allows the researchers to locate the filaments (right) that form the centre of the vortices. It is hoped that these insights will provide the basis for developing improved treatment methods. Credit: MPI for Dynamics and Self-Organization

Every five minutes in Germany alone, a person dies of sudden cardiac arrest or fibrillation, the most common cause of death worldwide. This is partly due to the fact that doctors still do not fully understand exactly what goes on in the heart during the occurrence. Until now, it was impossible to visualize dynamic processes in the fibrillating heart muscle, or myocardium. In today’s publication in Nature, an international team of researchers headed by Jan Christoph and Stefan Luther of the Max Planck Institute for Dynamics and Self-Organization and Gerd Hasenfuß of the Heart Center at the University Medical Center Göttingen show for the first time how vortex-like, rotating contractions that underlie life-threatening ventricular fibrillation can be observed inside the heart with the help of a new imaging technique, which can be used with existing ultrasound equipment. In the future, this newly developed imaging technique may help medical doctors to image and thus identify heart rhythm disorders, helping them to better understand cardiac disease and further develop new, more effective methods for treatment.

When the heart muscle no longer contracts in a coordinated manner, but simply flutters or twitches – a condition referred to medically as “fibrillation” – it is a highly life-threatening situation. If the ventricles, the main chambers of the heart, twitch in this disorderly way, there is just one opportunity for medical intervention: the heart must be defibrillated within a few minutes with a strong electrical shock, which is very painful and can damage the heart’s tissue. Fibrillation of the atria, on the other hand, is not directly life-threatening; however, if left untreated it can have dire consequences. For over 100 years, researchers have sought to understand the mechanisms behind fibrillation so as to improve treatment options. “The key to a better understanding of fibrillation lies in a new, high-resolution imaging technique that allows processes inside the heart muscle to be observed,” says Stefan Luther, Leader of the Biomedical Physics Research Group at the Max Planck Institute for Dynamics and Self-Organization and Professor at University Medical Center Göttingen.

Diagnostic breakthrough

“The mechanical movements of the myocardium during fibrillation are highly complex, but they are also highly characteristic – almost like a fingerprint of fibrillation,” says Jan Christoph, a researcher at the Max Planck Institute for Dynamics and Self-Organization and the Heart Center at the University Medical Center Göttingen and lead author of the study. Together with Stefan Luther and an international team of researchers, the physicist has presented an imaging method that allows the fibrillating myocardium to be visually time-resolved in three dimensions, and therefore much more accurately than was previously possible – and it does so using clinically available high-resolution ultrasound equipment.

3D ultrasound measurements of mechanical filaments in the fibrillating heart. Credit: Max Planck Society

The new diagnostic method will help to make the treatment of ventricular fibrillation and possibly also atrial fibrillation more effective. The improved understanding of fibrillation, which can be achieved with the procedure, could help to advance the development of novel defibrillation techniques. In low-energy defibrillation, for example, the electrical pulses used to stop fibrillation are much weaker but much more targeted compared to the current, very painful method, which uses high-energy electric shocks. With the new form of ultrasound imaging, researchers could learn how to use low-energy pulses to restore normal heart rhythm.

The Göttingen-based researchers are now refining the method so that it will also be able to visualize the complex excitation dynamics, which occur during atrial fibrillation. In the future, cardiologists will be able to see exactly where pathological foci of excitation need to be removed by ablation. The new ultrasound method may also be helpful in the research, diagnosis and treatment of heart failure, during which the myocardial cells do not work effectively as their coordinated contractile movements are disrupted. Doctors would be able to determine the causes with the help of detailed ultrasound scans, enabling them to detect heart failure earlier and treat it more effectively.

Electrical waves cause mechanical contractions of the heart

Every heartbeat is triggered by electrical waves of excitation that propagate through the myocardium at high speed and cause the myocardial cells to contract. If these waves become turbulent, the result is cardiac arrhythmia. Doctors have long known that in cardiac arrhythmias, rotational electrical waves of excitation swirl through the heart muscle. Until now, their investigations of cardiac arrhythmias have focussed on such electrical vortices. However, they have not been able to ascertain a full picture of the dynamics, neither in the laboratory nor in the clinical setting. The MPIDS researchers took a different approach. Instead of concentrating on electrical stimulation, they looked at the twitching contractions of the fibrillating myocardium. “Until now, little importance was attached to the analysis of muscle contractions and deformations during fibrillation. In our measurements, however, we saw that electric vortices are always accompanied by corresponding vortex-shaped mechanical deformations,” physicist Jan Christoph explains.

Computer simulation of an electromechanical vortex in the heart muscle tissue. Credit: Max Planck Society

Ventricular fibrillation in 3-D

In order to visualize the trembling movements inside the heart muscle in three dimensions and to correlate them with the electrical excitation of the heart, the researchers developed new high-resolution ultrasound measuring methods. They also showed that these methods can be used in high-performance ultrasound equipment that is already in routine use in many cardiology institutions. By analyzing the image data of the muscle contractions, they were able to observe exactly how areas of contracted and relaxed muscle cells move in a vortex through the myocardium during fibrillation. They also observed filament-like structures that were previously known to physicists only in theory and from computer simulations. Such a filament-like structure resembles a thread and marks the eye of the whirlpool-like wave or cyclone moving through the myocardium. It is now possible for the first time to pinpoint these centres of the vortices inside the myocardium.

In addition to ultrasound scans, the researchers used high-speed cameras and fluorescent markers that reveal the electrophysiological processes in the myocardium. The images obtained confirmed that the mechanical vortices correspond very well with the electrical vortices.

According to the researchers in Göttingen, ultrasound technology has progressed tremendously in recent years in terms of image quality and imaging speeds, and the potential of modern ultrasound technology has yet to be fully exploited. “Together with the immensely increased computing power of modern computers and rapid advancements in computer graphics and digital image processing, new measurement and visualization possibilities are being created for investigating the heart. We can apply these developments in medicine today,” Jan Christoph says.

Electrical waves on the heart surface. Credit: Max Planck Society

From physics to medicine

The study is an example of successful interdisciplinary collaboration between physicists and doctors at the DZHK. “This revolutionary development will open up new treatment options for patients with cardiac arrhythmias. As early as 2018, we will use the new technology on our patients to better diagnose and treat cardiac arrhythmias and myocardial diseases,” says Gerd Hasenfuß, co-author of the study, Chairman of the Göttingen Heart Research Center Göttingen and the Heart Center at the University Medical Center Göttingen. Stefan Luther is certain of one thing: “Peering deeply into the inner dynamics of the heart marks a milestone in heart research and will decisively shape our understanding and treatment of heart disease in the future.”


Explore further:
Cause of killer cardiac disease identified by new method

More information:
J. Christoph et al. Electromechanical vortex filaments during cardiac fibrillation, Nature (2018). DOI: 10.1038/nature26001

Journal reference:
Nature

Provided by:
Max Planck Society

Tagged with:

About author

Related Articles