Breaking News
December 16, 2018 - Menlo Therapeutics’ Successful Phase 2 Clinical Trial of Serlopitant Demonstrates Reduction of Pruritus Associated with Psoriasis
December 16, 2018 - Siblings of children with autism or ADHD are at elevated risk for both disorders
December 16, 2018 - New project aims to understand why and how metabolic disorders develop in patients
December 16, 2018 - Diets containing GM maize have no harmful effects on health or metabolism of rats
December 16, 2018 - Are doctors and teachers confusing immaturity and attention deficit?
December 16, 2018 - Hearing loss linked with increased risk for premature death
December 16, 2018 - Chromatrap buffer reagents for lysing cells offer many benefits
December 16, 2018 - Young Breast Cancer Patients Face Higher Risk for Osteoporosis
December 16, 2018 - 3-D printing offers helping hand to people with arthritis
December 16, 2018 - Community Health Choice helps manage complex and chronic care conditions
December 16, 2018 - Regular trips out could dramatically reduce depression in older age
December 16, 2018 - CWRU to use VivaLNK’s Vital Scout device for stress study in student athletes
December 16, 2018 - ‘Easy Way Out’? Stigma May Keep Many From Weight Loss Surgery
December 16, 2018 - Gout drug may protect against chronic kidney disease
December 16, 2018 - Talking about memories enhances the wellbeing of older and younger people
December 16, 2018 - Occupational exposure to pesticides increases risk for cardiovascular disease among Latinos
December 16, 2018 - A biomarker in the brain’s circulation system may be Alzheimer’s earliest warning
December 16, 2018 - Magnesium may play important role in optimizing vitamin D levels, study shows
December 16, 2018 - The effect of probiotics on intestinal flora of premature babies
December 16, 2018 - Parents spend more time talking with kids about mechanics of using mobile devices
December 16, 2018 - Biohaven Announces Positive Results from Ongoing Rimegepant Long-Term Safety Study
December 16, 2018 - Arterial stiffness may predict dementia risk
December 16, 2018 - Study explores link between work stress and increased cancer risk
December 16, 2018 - Sex work criminalization linked to incidences of violence finds study
December 16, 2018 - Johns Hopkins researchers discover swarming behavior in fish-dwelling parasite
December 16, 2018 - Schistosomiasis prevention and treatment could help control HIV
December 16, 2018 - Early postpartum opioids linked with persistent usage
December 16, 2018 - Johns Hopkins researchers identify molecular causes of necrotizing enterocolitis in preemies
December 16, 2018 - Advanced illumination expands capabilities of light-sheet microscopy
December 16, 2018 - Alzheimer’s could possibly be spread via contaminated neurosurgery
December 16, 2018 - Unraveling the complexity of cancer biology can prompt new avenues for drug development
December 16, 2018 - Inflammatory Bowel Disease, Prostate Cancer Linked
December 16, 2018 - Cannabis youth prevention strategy should target mental wellbeing
December 15, 2018 - Recent developments and challenges in hMAT inhibitors
December 15, 2018 - Sewage bacteria found lurking in Hudson River sediments
December 15, 2018 - CDC selects UMass Amherst biostatistician model that helps predict influenza outbreaks
December 15, 2018 - Researchers reveal brain mechanism that drives itch-evoked scratching behavior
December 15, 2018 - New computer model helps predict course of the disease in prostate cancer patients
December 15, 2018 - Obesity to Blame for Almost 1 in 25 Cancers Worldwide
December 15, 2018 - How the brain tells you to scratch that itch
December 15, 2018 - New findings could help develop new immunotherapies against cancer
December 15, 2018 - World’s largest AI-powered medical research network launched by OWKIN
December 15, 2018 - Young people suffering chronic pain battle isolation and stigma as they struggle to forge their identities
December 15, 2018 - Lifespan extension at low temperatures depends on individual’s genes, study shows
December 15, 2018 - New ingestible capsule can be controlled using Bluetooth wireless technology
December 15, 2018 - Researchers uncover microRNAs involved in the control of social behavior
December 15, 2018 - Research offers hope for patients with serious bone marrow cancer
December 15, 2018 - Link between poverty and obesity is only about 30 years old, study shows
December 15, 2018 - Mass spectrometry throws light on old case of intentional heavy metal poisoning
December 15, 2018 - BeyondSpring Announces Phase 3 Study 105 of its Lead Asset Plinabulin for Chemotherapy-Induced Neutropenia Meets Primary Endpoint at Interim Analysis
December 15, 2018 - Study finds that in treating obesity, one size does not fit all
December 15, 2018 - Tenacity and flexibility help maintain psychological well-being, mobility in older people
December 15, 2018 - Study reveals role of brain mechanism in memory recall
December 15, 2018 - High levels of oxygen encourage the brain to remain in deep, restorative sleep
December 15, 2018 - Experimental HIV vaccine strategy works in non-human primates, research shows
December 15, 2018 - Genetically modified pigs could limit replication of classical swine fever virus, study shows
December 15, 2018 - FDA Approves Herzuma (trastuzumab-pkrb), a Biosimilar to Herceptin
December 15, 2018 - Cost and weight-loss potential matter most to bariatric surgery patients
December 15, 2018 - Cancer Research UK and AstraZeneca open new Functional Genomics Centre
December 15, 2018 - New research lays out potential path for treatment of Huntington’s disease
December 15, 2018 - Prestigious R&D 100 Award presented to Leica Microsystems
December 15, 2018 - Study shows septin proteins detect and kill gut pathogen, Shigella
December 15, 2018 - Study sheds new light on disease-spreading mosquitoes
December 15, 2018 - 2017 Saw Slowing in National Health Care Spending
December 15, 2018 - Monitoring movement reflects efficacy of mandibular splint
December 15, 2018 - Study supports BMI as useful tool for assessing obesity and health
December 15, 2018 - Self-guided, internet-based therapy platforms effectively reduce depression
December 15, 2018 - Organically farmed food has bigger climate impact than conventional food production
December 15, 2018 - Faster, cheaper test has potential to enhance prostate cancer evaluation
December 15, 2018 - Researchers study abnormal blood glucose levels of patients after hospital discharge
December 15, 2018 - Swedish scientists explore direct association of dementia and ischemic stroke deaths
December 15, 2018 - Study finds 117% increase in number of dementia sufferers in 26 years
December 15, 2018 - Eczema Can Drive People to Thoughts of Suicide: Study
December 15, 2018 - Link between neonatal vitamin D deficiency and schizophrenia confirmed
December 15, 2018 - Nurse denied life insurance because she carries naloxone
December 15, 2018 - Ritalin drug affects organization of pathways that build brain networks used in attention, learning
December 15, 2018 - Research pinpoints two proteins involved in creation of stem cells
December 15, 2018 - Gut bacteria may modify effectiveness of anti-diabetes drugs
December 15, 2018 - A new type of ‘painless’ adhesive for biomedical applications
December 15, 2018 - Early physical therapy associated with reduction in opioid use
Columbia researchers identify nerve cells that drive fruit fly’s escape behavior

Columbia researchers identify nerve cells that drive fruit fly’s escape behavior

image_pdfDownload PDFimage_print

Columbia University researchers have identified the nerve cells that initiate a fly’s escape response: that complex series of movements in which an animal senses, and quickly maneuvers away from, something harmful such as high heat. These results, based on observations in fruit fly larvae, provide a window into a survival mechanism so important that it has persisted across evolutionary time, and today exists in virtually all animals — including in people. They also lend insight into conditions characterized by dysfunctions in this response, such as allodynia, in which gentle touch triggers the same reaction as exposure to something harmful.

The study was published this week in the journal eLife.

“Protecting ourselves from danger is a critical tool for survival that we employ all the time, whether it’s yanking our hand away from a hot stovetop, or ducking our head to avoid a low ceiling,” said neuroscientist Wesley Grueber, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute and the paper’s senior author.

“These movements are quick, but complex, so teasing apart the brain activity that guides them has long proven difficult,” he continued. “With today’s findings, we can now confirm which nerve cells in flies orchestrate this process, bringing us closer to understanding the brain mechanisms that guide this essential behavior that evolved to keep us safe.”

In broad terms, the steps that dictate a fly’s escape can be divided into two parts: first the animal detects danger and then it reacts to it. Previous work found that specialized nerve cells in the animal’s sensory system, known as nociceptive neurons, act as detectors, switching on in the presence of danger and alerting flies to make their escape, first by bending themselves into a c-shape and then rolling out of harm’s way.

“The question for us then became: How do these nociceptive neurons send information back to the brain, and how does this result in the animal’s escape?” asked Anita Burgos, PhD, a postdoctoral researcher in the Grueber Lab and the paper’s first author.

To find out, the team used a revolutionary technique known as electron microscopy (EM) reconstruction. EM reconstruction allows researchers to visualize the pathways that link different neurons — like tracing the route between two cities on a road map.

By following the route nociceptive neurons took toward the brain, the researchers saw that the neuronal branches all terminated in the same region of the ventral nerve cord (the fly equivalent of our spinal cord). Upon closer inspection, the team found that this region was largely home to one type of cell: down-and-back neurons, so named because of their curved shape.

This discovery offered strong evidence that down-and-back neurons may be the key to the fly’s escape response. To confirm this, the researchers used genetics to manipulate the activity of down-and-back neurons, and observed their resulting behavior.

“When we switched on the down-and-back neurons, the flies performed the classic bend-and-roll escape even in the absence of harm,” said Dr. Burgos. “But when we silenced those same neurons, the animals could still sense danger, but couldn’t escape it. Their bodies wouldn’t bend correctly; and were also unable to roll away. Somehow, down-and-back neurons were driving both of these behaviors — bending and rolling — almost simultaneously.”

Further experiments revealed how it worked. Upon receiving a danger signal from the nociceptive neurons, down-and-back neurons sent two sets of instructions to the animals’ muscles — one that initiated the bend, and a second that initiated the roll. At first, it seemed counterintuitive for the same set of neurons to be in charge of driving two different types of movement.

“But in fact, the cellular activity we witnessed is an evolutionary solution for accomplishing the virtually limitless permutations of behaviors that animals can perform — a way for the brain to reuse the same neurons to perform different, but related, duties,” said Dr. Grueber, who is also associate professor of physiology & cellular biophysics and neuroscience at Columbia University Irving Medical Center.

“Even in a very simple organism such as the fly, we’re just beginning to understand how distinct movements are strung together into complex sequences,” added Dr. Burgos, “This new study is a significant step towards understanding any complex behavior that is made up of simpler actions that are linked together in sequence, such as human speech.”

The detailed mapping of brain circuits in this study may also provide insights into the mechanisms that guide the sensing abilities of other species, including people.

“This could ultimately be important for understanding how touch and pain are sensed separately, and how the two senses may become conflated in conditions such as allodynia, in which even the gentlest touch is interpreted as painful or dangerous,” said Dr. Grueber.

Source:

https://zuckermaninstitute.columbia.edu/columbia-scientists-locate-nerve-cells-enable-fruit-flies-escape-danger

Tagged with:

About author

Related Articles