Breaking News
April 21, 2019 - More TV, Tablets, More Attention Issues at Age 5
April 21, 2019 - Drug reduces risk of kidney failure in people with diabetes, study finds
April 21, 2019 - New research identifies novel link between antibiotic resistance and climate change
April 21, 2019 - Simple intervention can provide lasting protection for teens against junk food marketing
April 21, 2019 - The protein p38-gamma identified as a new therapeutic target in liver cancer
April 21, 2019 - Novel system enables researchers to study bacteria within mini-tissues in a dish
April 21, 2019 - Discovery of oral cancer biomarkers could save thousands of lives
April 21, 2019 - Geneva Exhibition committee gives gold medals to two medications developed by Kazan
April 21, 2019 - Scientists aim to minimize or eliminate hair loss during cancer treatment
April 21, 2019 - WiFi interacts with signaling pathways in the human brain
April 21, 2019 - Stroke Hospitalizations Down in Black, White Medicare Enrollees
April 21, 2019 - First common risk genes discovered for autism
April 21, 2019 - Researchers map auditory sensory system of the mouse brain
April 21, 2019 - Scientists Bring Pig’s Brain, Dead 4 Hours, Back to ‘Cellular Activity’
April 21, 2019 - Virtual reality a promising tool for reducing fears and phobia in autism
April 21, 2019 - New analysis lists out opportunities for U.S. medical schools to advance population health
April 21, 2019 - More sleep may help teens with ADHD focus and organize
April 21, 2019 - Breakthrough antibody treatment suppresses HIV without antivirals
April 21, 2019 - AveXis Data Reinforce Effectiveness of Zolgensma in Treating Spinal Muscular Atrophy (SMA) Type 1
April 21, 2019 - Is your hand pain arthritis, carpal tunnel or something else?
April 21, 2019 - Measles outbreaks may become more frequent if vaccination rates continue to decline
April 21, 2019 - Researchers succeed in accelerating process of creating 3D images
April 21, 2019 - Tiny worm mimics key genetic risk for Alzheimer’s
April 21, 2019 - Angry dreams explained by brain waves
April 20, 2019 - Parenteral Antimicrobial Tx at Home Burdens Children’s Caregivers
April 20, 2019 - Diabetes treatment may keep dementia, Alzheimer’s at bay
April 20, 2019 - New bandage-like biosensor collects and analyzes sweat
April 20, 2019 - A comprehensive, centralized database of bovine milk compounds
April 20, 2019 - Two new epigenetic regulators maintain self-renewal of embryonic stem cells
April 20, 2019 - New Evidence That Veggies Beat Steak for Heart Health
April 20, 2019 - Study reveals genes associated with heavy drinking and alcoholism
April 20, 2019 - Texas A&M AgriLife becomes the newest member of NutriRECS international consortium
April 20, 2019 - In most states, insurance won’t cover addiction treatments
April 20, 2019 - Computer-based memory games may be beneficial for individuals with fragile X syndrome
April 20, 2019 - Timing of food intake influences molecular clock in the liver of mice
April 20, 2019 - Precise decoding of breast cancer cells paves way for new treatment option
April 20, 2019 - Scientists use 3D imaging to help model complex processes performed by placenta
April 20, 2019 - MediciNova Announces Plans to Move Forward with a Phase 3 Trial of MN-166 (ibudilast) in ALS
April 20, 2019 - Genetic variants that protect against obesity could aid new weight loss medicines
April 20, 2019 - New technology developed for microscopic imaging in living organisms
April 20, 2019 - when quitting cigarettes, consider using more nicotine, not less
April 20, 2019 - Key proteins can block Listeria without triggering the death of host cells
April 20, 2019 - Researchers create a working model of cerebral tract to study brain function
April 20, 2019 - New study shows that microbes can help break toxic chemical in dust
April 20, 2019 - Scientists use NIR light and injected DNA nanodevice to guide stem cells to injury
April 20, 2019 - Microbial Features ID’d for Pediatric Irritable Bowel Syndrome
April 20, 2019 - Study reveals patterns of drug intoxication deaths, organ donors across the US
April 20, 2019 - Scientists deploy CRISPR gene-editing tool to engineer multiple edits
April 20, 2019 - AHA News: Here’s How Middle-Aged People — Especially Women — Can Avoid a Heart Attack
April 20, 2019 - Charcot foot: MedlinePlus Medical Encyclopedia
April 20, 2019 - France to ban popular breast implants over cancer risk: media
April 20, 2019 - Researchers explore whether time of day can affect the body’s response to physical exertion
April 20, 2019 - CPAP brings longer life for obese people with sleep apnea: Study
April 20, 2019 - New discovery transforms conventional microfluidics into open-space microfluidics
April 20, 2019 - An accurate estimation of the overall cost of bacterial resistance in French hospitals during 2015 and 2016
April 20, 2019 - ‘PRO-cision Medicine’ approach helps personalize care for patients with cancer
April 19, 2019 - TG Therapeutics Receives Orphan Drug Designation for Umbralisib from the U.S. Food and Drug Administration for the Treatment of Marginal Zone Lymphoma
April 19, 2019 - Screen time—even before bed—has little impact on teen well-being: study
April 19, 2019 - Cytosurge’s first FluidFM User Conference
April 19, 2019 - New study finds that previously described differences among endoscopists are not true
April 19, 2019 - Study compares effectiveness and cost of gene therapy and HSCT in major beta-thalassemia
April 19, 2019 - Scientific breakthrough provides new hope for people living with multiple sclerosis
April 19, 2019 - New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues
April 19, 2019 - Emergency medicine doctors find better way to treat severe epileptic seizures in children
April 19, 2019 - MedlinePlus: Cholesterol Good and Bad
April 19, 2019 - For busy medical students, two-hour meditation study may be as beneficial as longer course
April 19, 2019 - Music therapy helps young patients feel better
April 19, 2019 - Molecular target UNC45A is essential for cancer cell proliferation and tumor growth
April 19, 2019 - Crackling and wheezing could be the sounds of a progressing lung disease
April 19, 2019 - Key research takeaways from ECCMID 2019
April 19, 2019 - AI Can Identify Model of Cardiac Rhythm Device From Chest X-Ray
April 19, 2019 - New way to combat childhood anxiety: treat the parents
April 19, 2019 - Women getting C-sections best judge of own pain medication needs | News Center
April 19, 2019 - Light-intensity physical activity associated with healthy brain aging
April 19, 2019 - Immune responses that prevent fungal infections may eliminate Trichinella spiralis
April 19, 2019 - Exercising in the morning, rather than at night, may yield better results, shows study
April 19, 2019 - Why eating ‘right’ could cause you to stray from your diet
April 19, 2019 - Health Tip: Antidepressant Precautions – Drugs.com MedNews
April 19, 2019 - Bigger portions lead to preschoolers eating more over time
April 19, 2019 - Specific strains of Staphylococcus aureus linked to wounds that do not heal
Signaling pathway involving the Golgi apparatus identified in cells with Huntington’s disease

Signaling pathway involving the Golgi apparatus identified in cells with Huntington’s disease

image_pdfDownload PDFimage_print
Cells with Huntington’s disease lack the enzyme that creates cysteine and die in environments without it (Left). Cells treated with monensin have cysteine stores and are better prepared to survive in environments with little cysteine (Right). Credit: Juan Sbodio

Working with cells grown in the lab, Johns Hopkins researchers have identified a biochemical pathway that allows a structure within cells, called the Golgi apparatus, to combat stress caused by free radicals and oxidants. The research team showed that this pathway can be activated by a drug called monensin, which is commonly used as an antibiotic in animal feed.

The findings, they say, could help scientists develop new ways to protect cells against the type of oxidative stress linked to Huntington’s disease.

Details of the pathway, which involves the response from a series of proteins, are reported in the Jan. 9 issue of the Proceedings of the National Academy of Sciences.

“Normally, elevated oxidative stress is not good for cells, as it can compromise their natural protective responses,” says Bindu Paul, M.S., Ph.D., instructor of neuroscience at the Johns Hopkins University School of Medicine’s Solomon H. Snyder Department of Neuroscience. “We showed that we can enhance a pathway that protects the cells with a method that resembles vaccination. By giving a lower, less potent, dose of the stressor, you can boost the cell’s response so that it has a robust reaction to the real threat later on,” says Juan Sbodio, Ph.D., postdoctoral fellow at Johns Hopkins University School of Medicine’s Solomon H. Snyder Department of Neuroscience.

The Golgi is best known for its role as the shipping and sorting center of the cell, shuttling proteins to their proper locations. However, the ribbon-like structure is also one of the first responders to cellular stress, and it helps to protect the cell by producing cysteine, a basic building block of the proteins that make up our bodies, including the body’s natural antioxidant glutathione.

When a cell is exposed to cysteine deprivation and oxidative stress, the cell sends out the alarm to produce more cysteine to create glutathione, which combats oxidative stress by binding to and neutralizing oxidating agents. The researchers knew that a similar process is initiated by the Golgi when exposed to monensin to induce Golgi stress and wanted to explore this response further.

To better understand the effects of the drug, the scientists bathed cells in low doses of monensin, which, at high doses, is known to break apart Golgi. The researchers found that after the treatment, the proteins PERK, ATF4 and cystathionine ?-lyase (CSE)—the protein that is activated to create cysteine—appeared in elevated levels within the cell compared to nontreated cells. Previous research has linked low CSE production to Huntington’s disease. Because of this, researchers believe that neurons with Huntington’s disease cannot counteract dangerous free radicals or oxidants and are at risk of dying from stress.

The researchers wanted to find if there was a way to increase cysteine production in afflicted cells to protect them. The researchers gave lab-grown mouse cells that mimicked human Huntington’s disease a small dose of monensin and depleted cysteine in their nutrient bath.

The cells treated with monensin grew normally for 7-9 days during the experiment, while those not treated with monensin withered away, the team reports.

“We think that the monensin treatment built up the cell’s reserve of CSE and cysteine, protecting the cells against low cysteine levels,” says Paul.

The researchers also found that this stress response pathway also kick starts another pathway that creates hydrogen sulfide, a gas and key regulator for many important cellular processes.

In the future, the researchers hope to further study the pathway’s role in overall cellular health.


Explore further:
New evidence: How amino acid cysteine combats Huntington’s disease

More information:
Juan I. Sbodio et al, Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1717877115

Journal reference:
Proceedings of the National Academy of Sciences

Provided by:
Johns Hopkins University School of Medicine

Tagged with:

About author

Related Articles