Breaking News
December 14, 2018 - New discovery will improve the safety and predictability of CRISPR
December 14, 2018 - Geneticists discover how sex-linked disorders arise
December 14, 2018 - New method to visualize small-molecule interactions inside cells
December 14, 2018 - Study describes mechanism that makes people more vulnerable to hunger-causing stimuli
December 14, 2018 - Chronic opioid therapy associated with increased healthcare spending and hospital stays
December 14, 2018 - Blood Types
December 14, 2018 - Obesity linked to increased risk of early-onset colorectal cancer
December 14, 2018 - Blood test helps identify distinct molecular signatures in children with cystic fibrosis
December 14, 2018 - Scientists use water to track electrical activity of nerve cells
December 14, 2018 - Recurrence of urinary tract infection may depend on bacterial strain, study shows
December 14, 2018 - GBT Announces U.S. FDA Agrees with its Proposal Relating to Accelerated Approval Pathway for Voxelotor for the Treatment of Sickle Cell Disease and GBT Plans to Submit New Drug Application (NDA)
December 14, 2018 - Partial Thromboplastin Time (PTT) Test: MedlinePlus Lab Test Information
December 14, 2018 - Common tactics for health promotion at work may be detrimental to employees with obesity
December 14, 2018 - Myths about migration and health not supported by available evidence
December 14, 2018 - Recent findings on rare genetic disorder may help develop new treatment options
December 14, 2018 - New drug shows promise in treating sarcomas
December 14, 2018 - Scientists perform lung lavage as new approach for tuberculosis diagnosis in rhinoceros
December 14, 2018 - Recent winners of the Nobel Medicine Prize
December 14, 2018 - KHN’s ‘What the Health?’ Insurance enrollment is lagging — and there are lots of reasons why
December 14, 2018 - Study assesses safety and efficacy of new treatment for pancreatic cancer
December 14, 2018 - Study finds drug targets for Ebola, Dengue, and Zika viruses
December 14, 2018 - Study highlights need for personalized approach to treat ICU acquired delirium
December 14, 2018 - Soot particles from road traffic significantly contribute to air pollution
December 14, 2018 - Massage helps relieve pain, improve mobility in patients with knee osteoarthritis
December 14, 2018 - Researchers explore home healthcare nurses’ knowledge attitudes toward infection control
December 14, 2018 - Average outpatient visit in the U.S. costs nearly $500, shows new study
December 14, 2018 - Reference Infliximab, Biosimilar Equivalent for Crohn’s Disease
December 14, 2018 - New contact lens to treat eye injuries
December 14, 2018 - Acne could have a genetic basis find researchers promising new cure
December 14, 2018 - Higher physical activity associated with improved mood
December 14, 2018 - New UGA study points to optimal hypertension treatment for stroke patients
December 14, 2018 - Study highlights factors that can reduce food cravings
December 14, 2018 - Researchers discover Ebola-fighting protein in human cells
December 14, 2018 - Fentanyl surpasses heroin in cause of U.S. drug overdose deaths
December 14, 2018 - When Heart Attack Strikes, Women Often Hesitate to Call for Help
December 14, 2018 - A warning about costume contacts
December 14, 2018 - Study examines link between peripheral artery disease and heart attack
December 14, 2018 - Researchers develop biotechnological tool to produce antifungal proteins in plants
December 14, 2018 - 3D-printed adaptive aids can benefit patients with arthritis
December 14, 2018 - Chronic bullying during adolescence impacts mental health
December 14, 2018 - Integral Molecular and Merus collaborate to develop bispecific antibody therapeutics
December 13, 2018 - Importance of cell cycle and cellular senescence in the placenta discovered
December 13, 2018 - Gold “nanoprisms” open new window into vessels and single cells
December 13, 2018 - Research findings could lead to new targets for cancer-fighting therapeutics
December 13, 2018 - Butantan Institute signs collaboration agreement with MSD to develop dengue vaccines
December 13, 2018 - Study explores how patients want to discuss symptoms with doctors
December 13, 2018 - RUDN medics first to gather scattered data on hepatitis morbidity in Somalia
December 13, 2018 - Age and gender disparities found in use of bed nets to prevent malaria in sub-Saharan Africa
December 13, 2018 - Caffeine therapy benefits developing brains of premature babies
December 13, 2018 - New review focuses on electrospinning techniques used in musculoskeletal tissue engineering
December 13, 2018 - A new division focused on human immune system
December 13, 2018 - Zogenix Announces Positive Phase 3 Trial Results on the Efficacy and Safety of Fintepla (ZX008) in Dravet Syndrome
December 13, 2018 - BCR ABL Genetic Test: MedlinePlus Lab Test Information
December 13, 2018 - Caffeinated beverages during pregnancy linked to lower birth weight babies
December 13, 2018 - Stanford Medicine Health Trends Report examines opportunity to democratize health care
December 13, 2018 - Obsessive-compulsive disorder may protect individuals from obesity
December 13, 2018 - Scientists investigate how a painful event is processed in the brain
December 13, 2018 - Genetic study reveals new insights into underlying causes of moderate-to-severe asthma
December 13, 2018 - Study uncovers new genetic clues to frontotemporal dementia
December 13, 2018 - Vitamin C supplementation for pregnant smokers may reduce harm to infants’ lungs
December 13, 2018 - New study reveals yin-yang personality of dopamine
December 13, 2018 - Research identifies nerve-signaling pathway behind sustained pain after injury
December 13, 2018 - Children with high levels of callous traits show widespread differences in brain structure
December 13, 2018 - Long-term Benefit of Steroid Injections for Knee Osteoarthritis Challenged
December 13, 2018 - Adding new channels to the brain remote control
December 13, 2018 - In the Spotlight: A different side of neuroscience
December 13, 2018 - Medical Marvels: Using immunotherapy for melanoma that spread to the brain
December 13, 2018 - Puzzles do not keep dementia away finds study
December 13, 2018 - New mouse model shows potential for rapid identification of promising muscular dystrophy therapies
December 13, 2018 - Study reveals urban and rural differences in prenatal exposure to essential and toxic elements
December 13, 2018 - New collaborative partnership in quest of novel antibiotics
December 13, 2018 - Single tau molecule holds clues to help diagnose neurodegeneration in its earliest stages
December 13, 2018 - AHA Scientific Statement: Low Risk of Side Effects for Statins
December 13, 2018 - What Is Acute Flaccid Myelitis?
December 13, 2018 - How bereaved people control their thoughts without knowing it
December 13, 2018 - Health care democratization underway, according to 2nd annual Stanford Medicine Health Trends Report | News Center
December 13, 2018 - Going Beyond a Single Color
December 13, 2018 - London-based startup launches ‘thedrug.store’ aiming to clean up CBD industry
December 13, 2018 - Loss of tight junction barrier protein results in gastric cancer development
December 13, 2018 - Novel way to efficiently deliver anti-parasitic medicines
Potential drug targets for ALS revealed in study using CRISPR

Potential drug targets for ALS revealed in study using CRISPR

image_pdfDownload PDFimage_print
An MRI with increased signal in the posterior part of the internal capsule which can be tracked to the motor cortex consistent with the diagnosis of ALS. Credit: Frank Gaillard/Wikipedia

In a new application of gene-editing technology, researchers at the Stanford University School of Medicine have gleaned insights into the genetic underpinnings of amyotrophic lateral sclerosis, a neurodegenerative disease that’s notoriously tricky to parse.

The team’s findings are a step toward demystifying how the disease progresses and could even help lay the groundwork for new therapeutic targets.

ALS, also known as Lou Gehrig’s disease, erodes muscle function and impairs the brain’s ability to communicate with the body, making simple voluntary muscle movements—such as brushing your teeth, talking or even breathing—exceedingly difficult and, eventually, impossible. ALS falls into a category of neurodegenerative diseases that all share a common “signature”—abnormal protein clumps that build up in the brain.

In ALS, these protein clumps, or aggregates, are thought to be fatally toxic to neurons, ultimately leading to the devastating physical symptoms of the disease. But the process of the cells’ demise is still largely a black box.

“These toxic protein aggregates are what’s likely driving the pathology in the disease, but no one really knows how they cause neuronal cell death. That’s really what we wanted to probe in this study,” said Aaron Gitler, PhD, professor of genetics. He shares senior authorship with Michael Bassik, PhD, assistant professor of genetics.

Gitler’s and Bassik’s labs used CRISPR-Cas9 gene-editing technology to sort through the entire human genome and pick out the genes that helped neurons shore up defenses against the toxic protein. Not only did some genes give the researchers a deeper mechanistic understanding of the disease itself; a handful seem to hold potential as drug targets, too.

A paper describing the research will be published online March 5 in Nature Genetics. Graduate students Nicholas Kramer and Michael Haney share lead authorship.

A simple but deadly protein

The discovery that mutations in the C9orf72 gene is a relatively common cause of ALS has helped ignite efforts to understand how ALS works at the molecular level. In ALS, the mutated C9orf72 gene contains a huge segment of DNA that repeats itself and, when that part of the gene is erroneously turned into various rogue proteins, they gum up neuronal function and lead to cell death.

“In a healthy person, you might see 10 to 20 of these DNA repeats,” Haney said. “But in ALS, they expand to hundreds or even thousands of repeated segments, and that’s the template for the production of these toxic proteins.”

Gitler and Bassik set out to answer two basic questions: How do the toxic proteins snuff out otherwise healthy neurons? And are there other genes that inherently protect against—or conversely, exacerbate—the effects of the toxic proteins in the brain?

Rather than separately interrogate every gene in the human repository, the researchers used a tactic called genomewide screening, which harnesses CRISPR-Cas9 to alter the function of every single human gene simultaneously. In this case, they used the technology to produce “gene knockouts,” targeting genes with a kind of molecular scissors that makes precise cuts, leaving them unable to carry out normal function.

The gene knockouts, Kramer explained, help the researchers spot genes that either enhance toxicity or prevent it: If you identify a gene and knock it out, and the ALS protein repeats are no longer toxic, then you know that the absence of that gene actually protects the neuron against degeneration. And perhaps more importantly, it may be a potential drug target.

Tmx2: A sentinel of cell death

After systematically knocking out every gene in the human genome and measuring the toxicity of the ALS proteins in cells, the researchers found that about 200 genes, when knocked out, either helped to protect the cell from the toxic proteins or made it more vulnerable to them. To zero in on a smaller set of genes, Haney and Kramer followed up with two subsequent knockout screens in primary mouse neurons.

They found a handful of knockouts that were particularly potent protectors. One, for example, helped block off critical entrances through which the toxic ALS proteins infiltrate the cell and corrupt it. But there was another knockout in particular that caught the group’s attention for its mysterious ability to ward off neural death. The gene normally codes for a protein called Tmx2, which is found in a part of the cell called the endoplasmic reticulum. But when depleted in mouse neurons in a dish, the cells survived nearly 100 percent of the time—quite a jump, considering that the survival rate for normal neurons was 10 percent.

“We could imagine that Tmx2 might make good drug target candidate,” Haney said. “If you have a small molecule that could somehow impede the function of Tmx2, there might be a therapeutic window there.”

Right now, Tmx2’s role in the endoplasmic reticulum isn’t completely clear. But it’s thought to be involved in the response to various environmental stressors, particularly those that trigger cell death. According to the study’s findings, it may be a modulator of other genes that set off the cell-death process.

“We’re still in early phases, but I think figuring out exactly what Tmx2 normally does in a cell is a good place to start—that would hint at what functions are disturbed when these toxic species kill the cell, and it could point to what pathways we should look into,” Kramer said.

More broadly, CRISPR screens like the one in this study have been used to investigate a range of disease pathways. But the team said this is the first time, to their knowledge, that a genomewide human CRISPR knockout screen has been used to discover clues about a neurodegenerative disorder. Gitler and Bassik are currently teaming up to use this same approach to understand additional causes of ALS and even other neurological diseases—Huntington’s, Parkinson’s and Alzheimer’s—that involve toxic proteins. “I think it’s a really exciting application for CRISPR screens, and this is just the beginning,” Bassik said.


Explore further:
Scientists move closer to treatment for Huntington’s disease

More information:
CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9orf72 dipeptide-repeat-protein toxicity, Nature Genetics (2018). nature.com/articles/doi:10.1038/s41588-018-0070-7

Journal reference:
Nature Genetics

Provided by:
Stanford University Medical Center

Tagged with:

About author

Related Articles