Breaking News
March 26, 2019 - Attention, Seniors: Drink More Water and Head Off Disease
March 26, 2019 - Peptide shows promise for protecting kidneys from nephritis
March 26, 2019 - Scientists identify common genetic variants associated with post-stroke recovery
March 26, 2019 - Study finds link between menopause and changes in body composition
March 26, 2019 - Higher levels of sex hormones in older men related to lower biological age
March 26, 2019 - Research links participation in team sports to larger hippocampal volumes in children
March 26, 2019 - Cerveau announces research collaboration agreement with Eisai for novel tau imaging agent
March 26, 2019 - New technique measures frequency of sounds emitted from biological structures
March 26, 2019 - Removal of ‘zombie cells’ alleviates causes of diabetes in obese mice
March 26, 2019 - Women exposed to deepwater horizon oil spill continue to experience PTSD symptoms
March 26, 2019 - Shaping new treatments for tuberculosis
March 26, 2019 - Understanding genetic interactions holds key to new personalized therapies
March 26, 2019 - Nervous system relies on guidance cues for neuronal axons to reach destinations
March 26, 2019 - Altering gut microbiome may be potential treatment option for PCOS
March 26, 2019 - Moleculin Files with FDA for Expedited Approval Pathway for Annamycin
March 26, 2019 - GPs play pivotal role in ensuring success of new Faster Diagnosis Standard for Cancer
March 26, 2019 - New clues discovered to lung transplant rejection
March 26, 2019 - New study offers insight into development of delusions
March 26, 2019 - Children’s ball pits full of pathogenic microbes
March 26, 2019 - Exploring pathophysiological factors that link sleep problems and Alzheimer’s disease
March 26, 2019 - Walking downhill after meals can reduce bone resorption in postmenopausal women with diabetes
March 26, 2019 - USA LESS Issues Voluntary Nationwide Recall of LEOPARD Miracle Honey Due to Presence of Undeclared Sildenafil
March 26, 2019 - CT scan prior to spine fusion finds almost half of patients had undiagnosed osteoporosis
March 26, 2019 - After 2 Apparent Student Suicides, Parkland Grieves Again
March 25, 2019 - Inherited form of rickets improves more with new injectable medicine than conventional therapy
March 25, 2019 - Trastuzumab Tied to Higher Long-Term Risk for Heart Failure
March 25, 2019 - Personal context directly affects CPAP use
March 25, 2019 - Mosquito tracking key to preventing disease outbreaks
March 25, 2019 - Scientists Detect Hidden Signals from Beneficial Bacteria
March 25, 2019 - Treating women with thyroid antibodies with Levothyroxine do not increase live birth rate
March 25, 2019 - Brain area that only processes spoken, not written words identified
March 25, 2019 - Race and ethnicity influence fracture risk in diabetic patients
March 25, 2019 - Researchers report new regenerative medicine approach for treating osteoarthritis of the knee
March 25, 2019 - Exposure to dim light at night may contribute to spread of breast cancer to bones
March 25, 2019 - Benefits of osteoporosis treatment in postmenopausal women outweigh the perceived risks
March 25, 2019 - Researchers find evidence of Cryptosporidium parasite in Minnesota’s public water systems
March 25, 2019 - Three Clues to Raised Risk of Miscarriage
March 25, 2019 - Structured play helps toddlers self-regulate, altering their life course
March 25, 2019 - Translating horror into justice: Stanford psychiatrist advocates for human rights
March 25, 2019 - HORIBA Medical introduces D-Dimer reagent for Yumizen G hemostasis range
March 25, 2019 - Recurrent pregnancy loss may be caused by sperm DNA damage, finds study
March 25, 2019 - Special Collection tracks development of new diagnostic tests for tuberculosis
March 25, 2019 - Air Force develops genetic test to predict mental performance
March 25, 2019 - To abort or not to abort—making difficult choices alone
March 25, 2019 - Computer vision technology could aid ICU care by spotting movement
March 25, 2019 - IONTAS wins ‘Small Business of the Year’ category at Cambridge News Business Excellence Awards 2019
March 25, 2019 - First postpartum depression drug gets FDA nod
March 25, 2019 - Research Recognition Award will help improve lives of young people with absence epilepsy
March 25, 2019 - Bisphosphonates to treat osteoporosis appears to be beneficial for all women
March 25, 2019 - Time-restricted eating may prove to be a dietary intervention against breast cancer
March 25, 2019 - Researchers develop new augmented reality app to assess spatial memory
March 25, 2019 - Dolomite Bio releases new Drop-seq datasets for single-cell RNA sequencing
March 25, 2019 - Hemoglobin A1c blood test may underestimate prevalence of diabetes
March 25, 2019 - Immune system errors linked to development of childhood leukemia
March 25, 2019 - Eating leafy green vegetables may help maintain muscle strength and mobility
March 25, 2019 - BMA secures state-backed clinical negligence indemnity scheme for GP trainees
March 25, 2019 - Biohaven Announces Completion of Pre-NDA Meeting With FDA for Oral CGRP Receptor Antagonist Rimegepant
March 25, 2019 - Adding breakfast to classrooms may have a health downside
March 25, 2019 - She Was Dancing On The Roof And Talking Gibberish. A Special Kind Of ER Helped Her.
March 25, 2019 - KNAUER introduces new Sepapure FPLC columns and media for protein purification tasks
March 25, 2019 - Weight loss in obese migraine sufferers can improve their quality of life
March 25, 2019 - Exposure to particulate air pollution may lead to reduced sperm production
March 25, 2019 - Synthetic peptide appears to disrupt inflammation and protect kidneys from nephritis
March 25, 2019 - New guideline focuses on strategies to improve health of older adults with diabetes
March 25, 2019 - Study evaluates prescribing of preventive drugs at the end of life in older adults with cancer
March 25, 2019 - Radial or femoral approaches for PCI are equal in terms of survival in heart attack patients
March 25, 2019 - Study shows how some autoimmune diseases are more closely related than others
March 25, 2019 - Long term opioid medications impacts production of important hormones
March 25, 2019 - FDA Issues Complete Response Letter for Zynquista (sotagliflozin)
March 25, 2019 - CDC researchers report on trends in hospital breastfeeding policies
March 25, 2019 - States Push For Caregiver Tax Credits
March 25, 2019 - Females on ketogenic diet fail to show metabolic benefits in animal model
March 25, 2019 - Modulating stiffness of blood-forming stem cells could facilitate mobilization procedures
March 25, 2019 - Gene editing regulations to be tightened
March 25, 2019 - CPAP treatment can result in weight loss in people with sleep apnea and obseity
March 25, 2019 - Highly attractive businesswomen are considered less trustworthy ‘femmes fatales’
March 25, 2019 - Breast Density Categorization Varies With Screening Modality
March 25, 2019 - Researchers explore link between metal exposure and Parkinson’s symptoms
March 25, 2019 - Later meal timing may contribute to weight gain
March 25, 2019 - Around one in hundred people has autism spectrum condition in China
Mending broken hearts with cardiomyocyte molds

Mending broken hearts with cardiomyocyte molds

image_pdfDownload PDFimage_print
Programming induced pluripotent stem cells into heart muscle cells requires biochemical and biomechanical cues. Growing the cells in a three-dimensional substrate that mimics the natural heart environment produces better cells. Credit: Parisa Pour Shahid Saeed Abadi/Michigan Tech

2.5 billion. That’s approximately the number of times the human heart beats in 70 years. And sometimes during the course of its unrelenting contractions and relaxations, the heart muscle can no longer bear the strain.

If heart muscle cells—cardiomyocytes—could be repaired by cells taken from one’s own body, the patient’s recovery improves. But manufacturing heart cells requires an exacting process tailored specifically to an individual. Laid out in a new article published today in Advanced Functional Materials, a team of researchers at Michigan Technological University in collaboration with Harvard Medical School, shows how cardiomyocytes grown in a heart-like environment mature more quickly, have improved functionality and are less likely to be rejected by patients’ bodies.

Pluripotent Stem Cells

Many people with heart injuries from heart attacks or birth defects could benefit from the “self-therapeutic” process of injecting healthy cells into the damaged heart muscle. Labs use induced pluripotent stem cells, also known as master cells, which using biochemical cues can be “programmed” to become any type of cell, whether for the heart muscle or otherwise. Yet current processes result in underdeveloped cells.

To date, manufacturing cardiomyocytes has occurred in two-dimensional settings (essentially, petri dishes). But the growth environment plays a large role in the ways the cells develop. Thus, simulating the actual heart environment—with lots of pressure and specific forces acting on the growing cells—could lead to more robust cardiomyocytes.

“Unfortunately stem cell therapeutics don’t have high success rates partly because the cells are not mature and fully functional. The maturation and functionality are essential,” says Parisa Pour Shahid Saeed Abadi, assistant professor of mechanical engineering, whose work in creating heart cell growth environments is detailed in the new article “Engineering Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes using Substrates with Multi-Scale Topography.”

These lab-fabricated, fluorescently stained cardiomyocytes-heart muscle cells-exhibit the maturation and functionality of heart cells grown within a heart. Credit: Parisa Pour Shahid Saeed Abadi/Michigan Tech

Mimicking the Natural Heart Environment

Abadi and her coauthors have created three-dimensional substrates—essentially, molds—that recreate the environment in which heart cells grow inside the human body. Biomechanical properties the substrates induce include pressure and stiffness.

“The mechanical properties of substrates play an important role in the cell behavior because the mechanical cues that cells sense in the actual (heart) environment is unique,” Abadi says. “We are using biochemical and biomechanical cues to enhance the differentiation and maturation. If we don’t take advantage of the physical cues and only rely on chemical cues, the process suffers from low efficiency and batch-to-batch inconsistency.”

Using photolithography and re-flow processing, Abadi’s substrates are patterned at the micron and submicron levels, approximating the natural physical forces cells experience. Photolithography uses ultra-violet light to remove portions of polydimethylsiloxane (PDMS) substrate to mold it into cylindrical shapes.

Additional micro-patterning of the substrate changes the cytoskeleton in the cell and the shape of the nucleus, which cause the genes in the cell to change. As the cardiomyocytes mature, they beat stronger and resemble the cells found in natural, mature heart muscle.

“On day one we start seeing the effect of the substrate on the morphology of the cells,” Abadi says.

Parisa Pour Shahid Saeed Abadi’s lab combines the interdisciplinary backgrounds of its researchers to solve problems not easily solved by approaches from a single discipline. Credit: Sarah Bird/Michigan Tech

Next Steps

Abadi’s lab, which is partly funded by the American Heart Association, continues to improve the substrate preparation methods. As cardiomyocytes need to communicate with each other during their growth, Abadi also plans to stimulate electrical conductivity between cells. Translational studies in animals are the next step for the research.

“My lab works at the interface of materials, mechanics and medicine,” says Abadi, who came to Michigan Tech in 2017 following a National Institutes of Health post-doctoral fellowship at Harvard Medical School’s Brigham and Women’s Hospital.

Abadi notes that her lab relies on the interdisciplinary backgrounds of its undergraduates, graduate students and post-doctoral researchers, combining different knowledge bases to solve complex questions of fabricating better nanomaterials for medical applications that cannot be tackled from one discipline alone.

“I pick problems I can solve with the knowledge of mechanical engineering and nanomaterials,” she says. “I use microfabrication and nanofabrication techniques to tackle problems that are challenging for biologists or clinicians to address.”

To mend broken hearts, Abadi and her engineering team have learned that strong cardiomyocytes grow better under pressure.


Explore further:
Scientists use color-coded tags to discover how heart cells develop

More information:
Advanced Functional Materials (2018). DOI: 10.1002/adfm.201707378

Journal reference:
Advanced Functional Materials

Provided by:
Michigan Technological University

Tagged with:

About author

Related Articles