Breaking News
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
January 19, 2019 - First-ever tailored reporting guidance to improve patient care and outcomes
January 19, 2019 - 4.6 percent of Massachusetts residents have opioid use disorder
January 19, 2019 - New study suggests vital exhaustion as risk factor for dementia
January 19, 2019 - New antibiotic discovery heralds breakthrough in the fight against drug-resistant bacteria
January 19, 2019 - Ural Federal University scientists synthesize a group of multi-purpose fluorophores
January 19, 2019 - Researchers identify new therapeutic target in the fight against chronic liver diseases
January 19, 2019 - Preparation, characterization of Soyasapogenol B loaded onto functionalized MWCNTs
January 19, 2019 - FDA Approves Ontruzant (trastuzumab-dttb), a Biosimilar to Herceptin
January 19, 2019 - Tobacco use linked with higher use of opioids and sedatives
January 19, 2019 - Study delves deeper into developmental dyslexia
January 19, 2019 - Anti-vaccination movement one of the top health threats in 2019 says WHO
January 19, 2019 - Newly developed risk score more effective at identifying type 1 diabetes
January 19, 2019 - Highly effective protocol to prepare cannabis samples for THC/CBD analysis
‘Super gonorrhoea’ raises the stakes in the war against superbugs

‘Super gonorrhoea’ raises the stakes in the war against superbugs

image_pdfDownload PDFimage_print
Antibiotic resistance is not new but recent developments increase the urgency for action. Credit: Shutterstock

There has been a lot of news over the past few weeks about the rise of superbugs and antibiotic overuse, including a nasty sexually transmitted infection in the United Kingdom. A British man is the first in the world to be diagnosed with a strain of gonorrhoea resistant to all strains of antibiotics used to treat the infection.

Superbugs have tended to pose the greatest risk to people with compromised immune systems, such as cancer patients, and those who were injured or underwent surgery. But the sexual transmission of these bugs means antibiotic resistant infections can spread much more widely.

So what exactly are superbugs, and how scared should we be?

Super but not new

“Superbugs” aren’t the bug equivalent of superheroes. The term describes bacteria that have become resistant to antibiotics. How “super” they are depends on how many antibiotics they have become resistant to.

“Antibiotic resistance” and “drug-resistant infections” also refer to the same phenomena. They describe microorganisms that have evolved to become impervious to being killed by treatment with antibiotics.

There is a common misconception that antibiotic resistance means your body has become resistant to antibiotics. This is not true.

Antibiotic resistance is nothing new. Alexander Fleming’s 1945 Nobel Prize acceptance speech for the discovery of penicillin discusses the development of resistance. He includes a scenario of Patient X, who “buys some penicillin and gives himself, not enough to kill the streptococci but enough to educate them to resist penicillin. He then infects his wife. Mrs. X gets pneumonia and is treated with penicillin. As the streptococci are now resistant to penicillin the treatment fails.”

Indeed, resistance has been reported for every antibiotic ever introduced – generally within a few years of deployment.

How do they become resistant?

Bacteria are able to fight antibiotics by a variety of methods:

  • They build stronger cell walls to stop the drugs from entering
  • They actively spit them out so the antibiotic can’t reach a lethal concentration inside the cell
  • They produce enzymes that modify and inactivate the antibiotics
  • They alter the target of the antibiotic so it no longer interacts with the drug.

One or more of these resistance mechanisms may already be naturally present in a very small fraction of the millions of bacteria exposed to an antibiotic. This is called “innate resistance”. Most of the bacteria are killed, but this small population survives and grows.

In other cases, resistance develops through evolution (a process known as “induced resistance”). Bacteria grow rapidly. Under optimal conditions the population can double in as few as 15-30 minutes.

When exposed to sub-lethal doses of antibiotic, bacteria can become tolerant. They accumulate beneficial mutations over multiple generations. They then pass on this resistance to their progeny when they divide.

Bacteria are also very promiscuous. They exchange pieces of genetic material (plasmids) that carry the codes for resistance. This allows for the rapid spread of resistance between different types of bacteria.

A gene that makes bugs resistant to antibiotics of ‘last resort’ was found in Chinese pig farms. Credit: Zawinul/Shutterstock

An example is highlighted by recent news reports of resistance to a “last resort” antibiotic, colistin. A gene called mcr-1 (mobilized colistin resistance) was found to be contained in plasmids in E. coli bacteria collected from Chinese pig farms in 2011 (though it was not reported until 2015).

While colistin resistance was already known, the potential for resistance to be quickly spread by this new mechanism is of great concern. For some infections, colistin is the only antibiotic that still works. Indeed, the mcr-1 gene has now been found in multiple types of bacteria in more than 30 countries (including a patient in the United States in 2016).

The World Health Organisation is now warning that we face a return to a “pre-antibotic era”. It warns: “Common infections and minor injuries which have been possible to treat for decades may once again kill millions. Resistance to antibiotics will make complex surgeries and management of several chronic illnesses like cancer extremely difficult.”

Before antibiotics, 40% of deaths were due to infection. If we do not act, a review commissioned by the United Kingdom government predicts that by 2050 drug-resistant infections could cause 10 million annual deaths.

How did we get here?

This rise in resistance is largely driven by excessive antibiotic use. The same UK report indicates that up to two-thirds of the world’s antibiotics are not used to treat humans, but are given to animals grown for food. This animal use is often as a food additive, not as therapeutic treatment for an infection.

Of the remaining antibiotics used in humans, up to two-thirds may be inappropriately prescribed.

This huge overuse of antibiotics inevitably drives the development of resistance by unnecessarily exposing a much greater population of bacteria to antibiotics. Sub-lethal concentrations, such as in waste water from farms, fosters resistance.

Alarmingly, a recent study shows that our use of antibiotics is increasing even more.

So, given we already have people dying from bacteria resistant to all known antibiotics, and these bacteria are becoming increasingly prevalent, what’s stopping a global pandemic tomorrow?

It really comes down to the fact that, unless you’re immunocompromised or have an injury allowing the bacteria to get into your body, most bacteria aren’t particularly effective at spreading infections.

This is why the reports of a “super-gonorrhea” case in the UK are alarming. The sexually transmitted bacteria (Neisseria gonorrhoeae) causes nearly 80 million infections a year. This bacteria now has the potential to carry and spread high levels of antibiotic resistance through a much larger population of both people and other bacteria.

Fight against superbugs

It’s not all doom and gloom. Nations and international organisations are increasingly devoting attention and resources to fight the rise of antibiotic resistance. Strategies include more sparing use of existing antibiotics, and investment and incentives to develop diagnostics that can decide when antibiotics are needed.

Non-antibiotic approaches, such as vaccines, phage therapy, and microbiome manipulation, are garnering increased consideration.

Initiatives to re-invigorate the discovery of new antibiotics include efforts such as The Global Antibiotic Research & Development Partnership, the Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator, and Australia’s own global effort to crowdsource antibiotics from international chemists, The Community for Open Antimicrobial Drug Discovery.

We must keep our attention on the threat posed by drug resistant infections and invest in antimicrobial research to keep the potential global catastrophe at bay.


Explore further:
Supercharged antibiotics could turn tide against superbugs

Provided by:
The Conversation

About author

Related Articles