Breaking News
August 18, 2018 - Microscopic insect odour detecting mechanisms discovered
August 18, 2018 - Researchers develop new approach to study how tuberculosis infects people
August 18, 2018 - FDA Approves Kalydeco (ivacaftor) for Cystic Fibrosis in Children Ages 12 to
August 18, 2018 - An ion channel differentiates newborn and mature neurons in the adult brain
August 18, 2018 - Socio-economic position associated with pregnant women’s exposure to environmental hazards
August 18, 2018 - Voters to settle dispute over ambulance employee break times
August 18, 2018 - AGA urges policymakers and stakeholders to improve affordability of drugs
August 18, 2018 - Increasing dietary protein may lower risk of diabetes in people with NAFLD
August 18, 2018 - New HIV therapy suppresses viral replication and increases immune cells in drug-resistant patients
August 18, 2018 - Broad Genetic Testing for NSCLC May Not Improve Survival
August 18, 2018 - Discovery opens door for synthetic opioids with less addictive qualities
August 18, 2018 - Transgenic rice plant extracts could help stop the spread of HIV
August 18, 2018 - Hologic’s Cynosure division partners with Porter Instrument to distribute nitrous oxide and oxygen system
August 18, 2018 - Two thyroid medications recalled by FDA
August 18, 2018 - Forecast Sees Abnormal Heat Worldwide Through 2022
August 18, 2018 - Childhood absence epilepsy – Genetics Home Reference
August 18, 2018 - Fearing hard Brexit, UK drugmakers stockpile to protect lives
August 18, 2018 - Discovery may help broaden the scope of defenses against HPV
August 18, 2018 - When they start thinking green, they see green
August 18, 2018 - Scientists introduce microfluidics-based chip for manipulation and analysis of single cells
August 18, 2018 - Researchers design new way to grow nose cells for treating spinal cord injuries
August 18, 2018 - New light shed on relationship between calorie-burning fat and muscle function
August 18, 2018 - Surgery Saturday Instagram series takes you inside Stanford’s OR
August 18, 2018 - Researchers uncover surprising new role for inhibition in the cerebellum
August 18, 2018 - Children have better nutrition when they live near forests, global study shows
August 18, 2018 - OHSU professor conducts clinical trial with artificial pancreas using Xeris’ liquid glucagon
August 18, 2018 - HSS takes young patients with physical challenges on a surfing trip
August 18, 2018 - Study shows electronic health records leave doctors and patients unsatisfied
August 18, 2018 - Study uncovers mechanism that affects multiplication of dengue virus lineage
August 18, 2018 - Theravance Biopharma Reports Positive Top-Line Four-Week Data from Phase 2 Trial of TD-9855 for the Treatment of Symptomatic Neurogenic Orthostatic Hypotension
August 18, 2018 - Animations prove effective in accurately measuring pain
August 18, 2018 - Three faculty members appointed to endowed positions | News Center
August 18, 2018 - New technique detects, measures, analyzes unevenly charged biomolecules
August 18, 2018 - Brief exposures to stressors can be beneficial to cells, shows study
August 18, 2018 - UTHealth-led survey shows much work remains to increase safety of e-health records
August 18, 2018 - Researchers use super-resolution microscope to unravel secrets of deadly Nipah virus
August 18, 2018 - Scientists identify pathways that reveal insights into mechanism of lung cancer etiology
August 18, 2018 - FDA approves marketing of brainsway deep transcranial magnetic stimulation system for OCD
August 17, 2018 - OUHSC gets $20 million grant to advance research and patient care for Oklahomans
August 17, 2018 - Sperm morphology differs depending on qualities of male bird
August 17, 2018 - Texas A&M researchers develop clay-based platform to grow blood vessels
August 17, 2018 - FDA Approves Expanded Indication for Orkambi (lumacaftor/ivacaftor) in Children Ages 2-5 Years
August 17, 2018 - Caring for Concussions | NIH News in Health
August 17, 2018 - Team explores diabetes drug’s ability to treat RSV infection
August 17, 2018 - New imaging technique can spot tuberculosis infection in an hour | News Center
August 17, 2018 - PolyU researchers design new self-fitting scaffold to induce bone regeneration
August 17, 2018 - CartiHeal and LSU Health successfully enroll first two patients in Agili-C IDE pivotal study
August 17, 2018 - Less-invasive options are slowing disease progression in glaucoma patients
August 17, 2018 - Researchers discover new promising target point for cancer and diabetes therapies
August 17, 2018 - Podcast: KHN’s ‘What the Health?’ See you in court!
August 17, 2018 - New mobile phone application enables early detection of cerebral ictus
August 17, 2018 - UK’s leading sight loss charity invites applications from brightest minds in ophthalmic research
August 17, 2018 - Alternative devices can help when autoinjectors are unavailable
August 17, 2018 - Researchers produce artificial placenta model that closely resembles natural organ
August 17, 2018 - Study offers possibility of squelching a focal epilepsy seizure before symptoms appear
August 17, 2018 - FDA Alert: Temporary Total Artificial Heart Companion 2 Driver System by SynCardia Systems: Letter to Health Care Providers
August 17, 2018 - New statewide program in North Dakota aims to stem opioid misuse
August 17, 2018 - Researchers discover why sepsis from a staph infection causes organ failure
August 17, 2018 - Stony Brook University’s new medical students start a transformative journey
August 17, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy | News Center
August 17, 2018 - New modeling studies highlight urgent need for effective drug policy reforms to prevent HIV
August 17, 2018 - Research explores relationship between personal history of infectious fever and cancer risk
August 17, 2018 - Study finds rise in cases of progressive massive fibrosis among U.S. coal miners
August 17, 2018 - NEDBELS project examines impact of neurodiversity concept on legal systems
August 17, 2018 - Seeking solutions to treat scleroderma
August 17, 2018 - Statins may improve conditions of people with rare lung disease
August 17, 2018 - Study finds why some people with brain markers of Alzheimer’s never develop dementia
August 17, 2018 - Life Biosciences contributes $100,000 to fund its biomedical innovation course on aging
August 17, 2018 - Researchers develop a set of health outcome measures for children with complex medical situations
August 17, 2018 - Many Americans Not Being Assessed for Depression
August 17, 2018 - Scientists report setbacks in quest for AIDS cure
August 17, 2018 - Christopher Gardner busts myths about milk | News Center
August 17, 2018 - Bacterial activity in child’s mouth may serve as biomarkers for autism spectrum disorder
August 17, 2018 - Scripps Research scientists uncover new approach for treating thrombocytopenia
August 17, 2018 - Mathematical model shows the influence of human behavior on spread of infectious diseases
August 17, 2018 - Valley Hospital achieves Magnet recognition for fourth consecutive time
August 17, 2018 - Researchers describe link between poor oocyte development and oxidative stress in obese mice
August 17, 2018 - Hospitals battle for control over fast-growing heart-valve procedure
August 17, 2018 - AHA: Home-Delivered Meals Keep Heart Failure Patients Out of Hospital
August 17, 2018 - In Southern Mozambique, only half of people diagnosed with HIV enroll in medical care
Innovative device shows promise in capturing and releasing circulating tumor cells

Innovative device shows promise in capturing and releasing circulating tumor cells

image_pdfDownload PDFimage_print

For years, bioengineer Yaling Liu has been in pursuit of the deadly tumor cell. Liu has been perfecting a microfluidic device the size of two quarters that has the ability to catch and release circulating tumor cells (CTCs)–cancer cells that circulate in a cancer patient’s blood. Such a device could lead to earlier detection of primary tumors and metastasis, as well as determine the effectiveness of treatment–all through a simple, non-invasive blood test.

Liu, a faculty member in both bioengineering and mechanical engineering at Lehigh University, is in the early stages of testing his device in a clinical setting–and the results are promising.

Liu’s “lab on a chip” is notable for its ability to not only capture tumor cells circulating in the blood, but to “release” those cells as well.

“Our circulating tumor cell device can release a tumor cell captured from a blood sample, enabling single cell analysis,” says Liu. “It could be used to check the effectiveness of treatment, by identifying the amount of tumor cells circulating. Conducting genetic testing on a released single cell could also reveal whether the primary tumor had metastasized, as metastasized cells have unique genetic markers.”

The device could also be used to check the effectiveness of cancer gene therapy.

“Genetic tests could be performed on the released CTCs, indicating if the gene therapy is triggering changes in gene expression,” says Liu. In other words, such testing could help detect whether a therapy is working or if other methods should be explored.

Liu will present some of these findings today, April 18th, at a conference taking place in Istanbul, Turkey called The Future of Medicine hosted by Royal Academy of Science International Trust (RASIT) and Bahçe?ehir University. Liu will present via Skype from his office on Lehigh University’s campus in Bethlehem, Pennsylvania.

Liu’s device is part of a clinical drug trial for melanoma and renal cancers at the Lehigh Valley Cancer Institute. Funding for the study has been provided by the Andy Derr Foundation for Kidney Cancer Research. The goal is to gather preliminary data about whether the device can improve care.

The first stage of the trial, which involved an analysis of circulating tumor cells from a single blood draw of several dozen patients, has demonstrated strong potential.

“The next step will be to track a few patients over the course of their treatment, taking several blood draws to see if the data captured by the microfluidic device correlates with the data their medical team is collecting through other methods,” says Liu.

Liu and his team are preparing to undertake that next step within the next few months.

Magnetism, wavy-herringbone design key to CTC device’s success

Liu’s microfluidic device achieves two key standards by which the success of CTC devices is measured: high capture efficiency and high selectivity. Capture efficiency refers to the percentage of CTCs that the device collects. Selectivity measures how well it rejects unwanted cells, such as red and white blood cells.

The rectangular chip –smaller than a few square centimeters and using as little as a few milliliters of blood–is made of the polymer PDMS. The chip’s key feature is a tiny flow channel on a hierarchically designed pad that is optimized to capture tumor cells from the blood flowing across it.

Using microfluidic design principles, Liu’s group engineered vortices in their device to increase the chance that tumor cells will collide with the surface of the flow channel. The group also arranged ripples in a wavy-herringbone pattern lining the bottom of the capture pad.

“The herringbone surface generates a passive vortex that mixes the cells and increases the chance that they will collide with the capture pad,” says Liu. “High selectivity is achieved by smoothing the sharp grooved herringbone pattern into a wavy one, helping to filter out unwanted cells.”

The group uses immunoaffinity–the specific chemical affinity between an antibody and an antigen– to make CTCs adhere to the device while normal blood cells flow past. They coat the pad with a layer of anti-epithelial cell adhesion molecules (anti-EpCAM) which bond with CTCs but not with normal cells.

Liu and his team recently improved upon the device’s release efficiency–or its ability to allow circulating tumor cells to be collected for further study. Instead of permanently depositing particles through immunoaffinity, anti-EpCAM coated magnetic microparticles were trapped over the untreated PDMS surface by an external magnetic field and were then released by readily removing the magnet for CTC collection. The results were published in the journal Lab on a Chip (Lab on a Chip 17 (19), 3291-3299) in an article called: “Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices.”

According to Liu, under optimized conditions, the capture efficiency of the tumor cells were as high as 92% ± 2.8%. Capture experiments were also performed on whole blood samples, and the capture efficiency was in a high range of 81-95%, at different tumor cell concentrations.

He says such a method can potentially be used for CTC sorting from patient blood samples, CTC concentration monitoring, therapeutic guidance and drug dosage choice, and further study of tumors, such as drug screening and tumor mutations.

Adds Liu: “With metastatic cancers accounting for around 90% of deaths from solid tumors, the hope is that one day a device that can enable the analysis of single tumor cells circulating in the blood could make a big difference in early diagnosis, detection and monitoring of numerous types of cancer, without invasive biopsies.”

Source:

https://www1.lehigh.edu/news/engineering-a-better-cancer-blood-test-to-detect-tumors-early

Tagged with:

About author

Related Articles