Breaking News
November 21, 2018 - Disrupting reproduction strategy of disease-causing parasites could help fight malaria
November 20, 2018 - ACAAI: Almost 2 Percent of Children Have Milk Allergy
November 20, 2018 - Congenital anomalies of kidney and urinary tract – Genetics Home Reference
November 20, 2018 - Can video games improve the health of older adults with schizophrenia?
November 20, 2018 - Can flicking a molecular switch restore the aging immune system’s competence?
November 20, 2018 - Restek launches new Oregon cannabis pesticide standards
November 20, 2018 - Health sector coalition urges Government to safeguard patients in future UK-EU relationship
November 20, 2018 - Study evaluates second-hand marijuana smoke exposure among children
November 20, 2018 - Scientists identify three genes responsible for recurrent molar pregnancies
November 20, 2018 - Researchers identify multisystem disorder caused by bi-allelic variants in CCDC47 gene
November 20, 2018 - Dining Out With Allergies Is Tough, But These Steps Can Help
November 20, 2018 - Breastfeeding protects infants from antibiotic-resistant bacteria
November 20, 2018 - AI matched, outperformed radiologists in screening X-rays for certain diseases | News Center
November 20, 2018 - Adolescents increasingly choose marijuana over cigarettes, alcohol
November 20, 2018 - World’s first medical imaging scanner produces diagnostic scan of the whole human body
November 20, 2018 - Cytocybernetics receives NIMH award to move into neuronal drug development
November 20, 2018 - Recreational drug may help people regain trust in others
November 20, 2018 - Researchers identify gene vital for post-stroke recovery
November 20, 2018 - Scientists identify novel target for neuron regeneration, functional recovery in spinal cord injury
November 20, 2018 - Potential new therapeutic approach developed for synovial sarcoma
November 20, 2018 - Skeletal imitation reveals how bones grow atom-by-atom
November 20, 2018 - Autism behaviors show unique brain network fingerprints in infants
November 20, 2018 - Location matters for inflammation clearance
November 20, 2018 - Towards finding a druggable cancer target
November 20, 2018 - Ultragenyx Announces Intent to Submit New Drug Application to U.S. FDA for UX007 for the Treatment of Long-chain Fatty Acid Oxidation Disorders in Mid-2019
November 20, 2018 - Cooling ‘brains on fire’ to treat Parkinson’s
November 20, 2018 - Less pollution could increase the average lifespan of Copenhageners by an entire year in 2040
November 20, 2018 - Abramson Cancer Center becomes the 28th member institution of National Comprehensive Cancer Network
November 20, 2018 - The plug and play time-resolved spectrometer from PicoQuant
November 20, 2018 - Breakthrough technology offers new hope to people with glaucoma, retinitis and macular degeneration
November 20, 2018 - New report highlights key focus areas to help cancer screening realize its full potential
November 20, 2018 - International experts to discuss strategies to maintain spatial orientation in old age
November 20, 2018 - Low-protein, high-carb diet may promote healthy brain ageing
November 20, 2018 - Scientists discover new inhibitor that decreases lung inflammation
November 20, 2018 - Participation project calls for relaxing research ban on germline interventions
November 20, 2018 - Karyopharm’s Selinexor Receives Fast Track Designation from FDA for the Treatment of Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma
November 20, 2018 - Arthritis by the Numbers: Book of Trusted Facts & Figures
November 20, 2018 - Drug homing method helps rethink Parkinson’s
November 20, 2018 - AHF commends the passage of global AIDS funding in the House, calls for swift approval
November 20, 2018 - The search for new psychiatric disorder treatments
November 20, 2018 - New research offers hope for simpler way to diagnose and treat cancer
November 20, 2018 - Study sheds light on the infection mechanism of influenza virus
November 20, 2018 - Storage failures of eggs and embryos gain a new perspective
November 20, 2018 - Buyers of short-term health plans: Wise or shortsighted?
November 20, 2018 - Study indicates that frogs in virus-exposed groups breed at young age
November 20, 2018 - FDA Alerts Health Care Professionals and Patients Not To Use Sterile Drug Products from Pharm D Solutions
November 20, 2018 - Asthma may contribute to childhood obesity epidemic
November 20, 2018 - Live probiotics can change existing gut flora and alter immune response
November 20, 2018 - Researchers to explore the enigmatic role of unstructured protein in regulating circadian function
November 20, 2018 - Many patients with adenomas do not receive colonoscopy within recommended time frame
November 20, 2018 - Drug used to treat PTSD does not reduce suicidal thinking, may worsen nightmares and insomnia
November 20, 2018 - In-person social contact may offer protection against depression and PTSD symptoms
November 20, 2018 - Routine HCV testing in correctional facilities can best identify and treat disease, say researchers
November 20, 2018 - Molecular DNA analysis could facilitate more accurate prognosis, treatment of aggressive brain tumors
November 20, 2018 - Breast Cancer Recurrence Rate Not Up With Autologous Fat Transfer
November 20, 2018 - Beta 2 Microglobulin (B2M) Tumor Marker Test: MedlinePlus Lab Test Information
November 20, 2018 - Could bariatric surgery make men more virile?
November 20, 2018 - Urine test to check if patients take their medications will save the NHS money, say researchers
November 20, 2018 - Study reveals impact of residual inflammatory risk on clinical outcomes after PCI
November 20, 2018 - RNAi therapy shown to alleviate preeclampsia
November 20, 2018 - Replacement of dysfunctional microglia has therapeutic potential for neurodegenerative diseases
November 20, 2018 - Forming 3D Neuronal Models of the Brain
November 20, 2018 - Shoulder ultrasounds could be used to predict diabetes
November 20, 2018 - SGLT2 Inhibitors for Diabetes Linked to Increased Risk for Amputation
November 20, 2018 - Stem cell transplant cements Arizona men’s father-son bond
November 20, 2018 - Scientists try to develop portable systems that can quickly produce biologics on demand
November 20, 2018 - Automating Data Capture and Image Analysis in Continuous Experiments
November 20, 2018 - New drug shows promise for treating people with peanut allergy
November 20, 2018 - Researchers develop novel mouse model to study immunomodulatory therapies
November 20, 2018 - “Britain must not go backward on antibiotic controls to appease US trade deals” – Jim Moseley, CEO of Red Tractor
November 20, 2018 - Widespread errors in ‘proofreading’ cause inherited blindness
November 20, 2018 - Reaping the benefits of living longer
November 20, 2018 - New Program Hopes to Make Early Detection and Treatment of ALS a Reality
November 19, 2018 - Artificial bone-like substance mimics the way real bone grows at atomic level
November 19, 2018 - FDA Grants Orphan Drug Designation To RGX-181 Gene Therapy For The Treatment Of CLN2 Form Of Batten Disease
November 19, 2018 - Systemic mastocytosis – Genetics Home Reference
November 19, 2018 - Eye trauma secondary to falls in older adults increasing
November 19, 2018 - Empowering women in India to improve their health: A Q&A
November 19, 2018 - Researchers have trained a computer to analyze breast cancer images and classify tumors
November 19, 2018 - New glucose binding molecule could be key to better metabolic control for diabetics
Havard University grants license to Beam Therapeutics to develop new base editing technology

Havard University grants license to Beam Therapeutics to develop new base editing technology

image_pdfDownload PDFimage_print

Harvard University has granted a worldwide license to Beam Therapeutics, Inc., to develop and commercialize a suite of revolutionary DNA base editing technologies for the treatment of human disease.

The versatile platform of base editing technologies was invented by David R. Liu, PhD, Professor of Chemistry and Chemical Biology, and visionary postdoctoral fellows and graduate students in his Harvard laboratory.

“We developed programmable molecular machines that go to a target site of our choosing in the genomic DNA of a cell and directly convert one base to another base without making a double-stranded break in the DNA,” said Liu, who is a cofounder of Beam.

The licensed technology platform, which includes access to base editing technologies and associated technologies that enhance the targeting scope of base editing, opens up a wide range of human genetic conditions to the therapeutic promise of genome editing.

“Base editing represents a powerful platform for addressing a large class of genetic diseases that are more difficult to tackle with other methods of genome editing,” said Vivian Berlin, Director of Business Development in Harvard’s Office of Technology Development (OTD).

“Genome-editing and base editing technologies exemplify the continuous, vital contributions of Harvard’s researchers to biomedical innovation, and the opportunities such advances create for economic development and societal benefit,” said Isaac T. Kohlberg, Senior Associate Provost and Chief Technology Development Officer at Harvard. “The opportunity here is not only to tackle disease but perhaps to fundamentally change the practice of medicine.”

Beam announced today that it has raised up to $87 million in Series A financing led by F-Prime Capital Partners and ARCH Venture Partners.

Game-changing innovation

In the human genome, tens of thousands of variations in the sequence of DNA bases — As, Cs, Gs, and Ts — are known to contribute to disease. The majority of disease-associated human DNA variations consist of point mutations — locations in the genome where a single base pair has been replaced by another. That’s true for mutations that are associated with conditions including neurodegenerative diseases, metabolic diseases, blood diseases, losses of vision or hearing, and thousands of other known diseases with a genetic component.

Genome editing technologies using the CRISPR platform in combination with enzymes like Cas9 and Cpf1 have shown great promise for adjusting genes through insertions or deletions of multiple nucleotides, but have had more difficulty correcting single nucleotides cleanly and efficiently. The suite of Harvard technologies licensed to Beam uniquely meets that need.

Liu likens it to having the right tool for the job. Existing methods of genome editing that attempt to correct point mutations, including those using the CRISPR/Cas9 system, use CRISPR as molecular scissors to make double-stranded breaks and then rely on an introduced DNA template to guide correction. Double-stranded breaks within the cell, however, trigger end-joining processes that reconnect the broken ends but introduce stochastic insertions and deletions while doing so. As a result, the precise correction of point mutations typically has to compete with the generation of these other undesired byproducts. In addition, precise correction with CRISPR/Cas9 typically relies on cellular components that are absent in cells not actively dividing — that is, most cells in the body.

“Instead of precisely fixing a disease-driving mutation in a specific gene, cutting a target site more often disrupts the gene or creates a mixture of mutated variants of the gene,” explained Liu.

In contrast, the base editing methods developed in Liu’s Harvard lab use an engineered multi-component protein that includes a modified form of Cas9 to unzip a targeted portion of the DNA helix, opening up a small bubble in which to perform surgery on a single base, without causing double-stranded breaks in DNA. Liu’s base editors then directly convert the target base from the mutated form to the corrected form, and in some cases also enlist an additional protein component to prevent the cell from undoing the correction. Meanwhile, the engineered Cas9 nicks the unedited strand of DNA, prompting the cell to mend that second strand with a base that complements the corrected base. The result is a double swap that permanently changes an entire base pair (such as A* T) to a different base pair (such as G* C). Liu’s team reported the development of various base editors in Nature in 2016, Nature Biotechnology in February 2017, Nature Communications in June 2017, Science Advances in August 2017, Nature in October 2017, and Nature in February 2018.

“Over the past year and a half, we’ve greatly expanded the scope of base editing technologies,” said Liu, “broadening their targeting scope, improving their target DNA specificity, and creating new classes of base editors that could have a substantial impact on the treatment of genetic diseases.”

“That’s the ultimate goal: in an unmodified organism, whether it’s a human or a plant or an animal, to be able to change a DNA base to another DNA base at will, cleanly, and with high efficiency,” Liu said. “If we can get there, I think the potential for societal benefit is high.”

Spurring rapid development

“Our goal is to see this innovation develop into transformative treatments for the widest possible range of human diseases,” said OTD’s Berlin. “Licensing the commercial rights to a new startup ensures a rapid mobilization of resources to fully develop and exploit the technology in this field.”

To that end, the agreement with Beam Therapeutics stipulates particular diligence obligations by which the company must demonstrate its progress toward developing products. It also stipulates mechanisms by which a third party can propose to develop a therapeutic product, either in partnership with Beam (via a collaboration or sublicense) or through a separate agreement with the University, if that program is not of serious interest to Beam. Meanwhile, academic science remains entirely unhindered; the University always retains the rights of researchers to continue to use the intellectual property for educational and not-for-profit research purposes, whether at Harvard or elsewhere. The intellectual property is also available for licensing on a non-exclusive basis for industrial research purposes.

Under the terms of the agreement, the University will receive a multimillion-dollar upfront licensing payment from Beam Therapeutics, with additional terms confidential. The compensation acknowledges the value Harvard has created through its pioneering research and will support continued scientific discovery and innovation on campus.

Source:

Beam Therapeutics receives Harvard license to use base editing technology to make precision genetic medicines

Tagged with:

About author

Related Articles