Breaking News
September 23, 2018 - an ancient art may work best to prevent falls in old age
September 23, 2018 - Consumption of foods with lower nutritional quality related to increased cancer risk
September 23, 2018 - Patient Health Information Often Shared Electronically
September 23, 2018 - Can machine learning bring more humanity to health care?
September 23, 2018 - Body organs undergo structural changes in response to diet
September 23, 2018 - Genetic polymorphisms linked with muscle injury and stiffness
September 23, 2018 - As states try to rein in drug spending, feds slap down one bold Medicaid move
September 22, 2018 - Why Eczema Is Tougher to Treat for Black Patients
September 22, 2018 - Team reveals that human genome could contain up to 20 percent fewer genes
September 22, 2018 - USC research uncovers previously unknown genetic risk factor for Alzheimer’s disease
September 22, 2018 - Novel method achieves accurate and precise temperature estimation in fat-containing tissues
September 22, 2018 - BSI accredits Oxehealth’s vital signs measurement software as Class IIa medical device
September 22, 2018 - Evolution of psychiatric disorders and human personality traits
September 22, 2018 - Obesity in early puberty doubles asthma risk for boy’s future offspring
September 22, 2018 - World’s most advanced real-time patient monitoring platform receives key US patent
September 22, 2018 - Study explores connection between sexuality and cognitive status in older adults
September 22, 2018 - LSTM partners with TB Alliance to develop novel TB drug regimens
September 22, 2018 - Annual wellness visits improve delivery of preventive services in elderly population
September 22, 2018 - CHMP provides positive opinion to Cabometyx for previously-treated patients with hepatocellular carcinoma
September 22, 2018 - Hispanic communities with high proportions of Hispanics face more cardiovascular-related death
September 22, 2018 - Vici syndrome – Genetics Home Reference
September 22, 2018 - Single-dose drug can shorten flu symptoms by about a day, studies suggest
September 22, 2018 - AMSBIO launches circulating tumor DNA Reference Standards
September 22, 2018 - Sandalwood mimicking odorant could stimulate hair growth in humans
September 22, 2018 - Overlooked immune cells could play a key role in cancer immunotherapy, claims new study
September 22, 2018 - Study reveals prevalence of diagnosed type 1 and type 2 diabetes among American adults
September 22, 2018 - Researchers develop fast detection strategy to know type of virus acquired by patients
September 22, 2018 - Global Prevalence of Insufficient Activity 27.5 Percent
September 22, 2018 - Strategies to protect bone health in hematologic stem cell transplant recipients
September 22, 2018 - Brigham Genomic Medicine program unravels 30 medical mysteries
September 22, 2018 - New system harnesses power of bubbles to destroy dangerous biofilms
September 22, 2018 - Inflammation plays crucial role in preventing heart attacks and strokes, study reveals
September 22, 2018 - Calorie dense, nutrient deficient meals common across the world
September 22, 2018 - Researchers develop technology to study behavior of implants without animal testing
September 22, 2018 - First gut bacteria in newborns may have lasting effect on ability to ward off chronic diseases
September 22, 2018 - Detection of BFD virus in parrots in 8 new countries raises concerns for threatened species
September 22, 2018 - Insulin treatment shows great potential against chronic bowel inflammation
September 22, 2018 - ‘Liking Gap’ Might Stand in Way of New Friendships
September 22, 2018 - Simple factors that can avoid harmful side effects in type 2 diabetes
September 22, 2018 - ALSAM Foundation invests additional $2 million for drug discovery and development projects
September 22, 2018 - Study findings may advance discussion of how to effectively curb human-wildlife conflict
September 22, 2018 - Dopamine neurons may involve in conditions ranging from Parkinson’s disease to schizophrenia
September 22, 2018 - Protein C and Protein S Tests: MedlinePlus Lab Test Information
September 22, 2018 - Obesity and diabetes—two reasons why we should be worried about the plastics that surround us
September 22, 2018 - Concern over fussy eating prompts parents to use non-responsive feeding practices
September 22, 2018 - Novel mathematical approach uncovers existence of unsuspected biological cycles
September 22, 2018 - Cancer Research UK invests £14 million to transform London into cancer biotherapeutics hub
September 22, 2018 - Scientists predict how well the body will fight lung cancer by analyzing immune cell shapes
September 22, 2018 - New outbreak of rare eye disease identified in contact lens wearers
September 22, 2018 - Iterum Initiates SURE 2 and SURE 3 Phase 3 Clinical Trials of IV and Oral Sulopenem in Complicated Urinary Tract and Complicated Intra-abdominal Infections
September 22, 2018 - Research finds divide in dental health accessibility between city and regional areas
September 22, 2018 - Premature babies show better brain development when fed breast milk, finds study
September 22, 2018 - Novel system uses AI to detect abnormalities in fetal hearts
September 22, 2018 - UNC scientists reveal new approach to prevent obesity and diabetes
September 22, 2018 - CWRU receives NIH grant to learn how non-coding genes contribute to spread of colorectal cancer
September 22, 2018 - Scientists better understand influenza virus and how it spreads
September 22, 2018 - Scientists to focus on length of time when a person is alive and healthy
September 22, 2018 - Study shows positive financial impacts of Medicaid expansion for low-income Michigan residents
September 22, 2018 - Innovative approach for developing vaccine against most prevalent human malaria parasite
September 22, 2018 - Decision aids for parents of children with minor head injuries help communicate with physicians
September 22, 2018 - Research scientist at Kessler Foundation receives $10,000 grant to study aphasia after stroke
September 22, 2018 - New findings on characteristics of Burning Mouth Syndrome
September 22, 2018 - Study sheds light on molecular mechanisms underlying progression of prion diseases
September 22, 2018 - Innovation Fund Denmark supports research project that aims to fight Clostridium difficile diarrhea
September 22, 2018 - Survey estimates caregiving costs for family members
September 22, 2018 - Inhibiting NF-kB improves heart function in a mouse model of Duchenne muscular dystrophy
September 22, 2018 - Introducing new EMR system may affect several aspects of clinic workflow
September 22, 2018 - Study finds why some human genes are more popular with biomedical researchers
September 22, 2018 - Finding epigenetic signature appears to predict inflammation risk in serious type of IBD
September 22, 2018 - Researchers develop light-based technique to measure very weak magnetic fields
September 22, 2018 - UAB researchers study dysfunction of the immune system associated with NSAID carprofen
September 22, 2018 - QIAGEN and DiaSorin launch automated, CE-marked workflow for high-throughput TB screening
September 22, 2018 - EFS checklist provides user-friendly tool for evaluating feeding skills in preterm infants
September 22, 2018 - Family history in blacks, Latinos associated with higher risk of AFib
September 22, 2018 - Researchers identify new genetic disorder in a human patient
September 22, 2018 - Cardiac MR With Contrast Feasible in Developing World
September 22, 2018 - Daily low-dose aspirin doesn’t reduce heart-attack risk in healthy people
September 21, 2018 - Children with asthma found to be disadvantaged in education and future occupation
September 21, 2018 - Interaction of chemical slurry and ancient shale in fracking wastewater causes radioactivity
September 21, 2018 - Scientists use mice to study transmission of Lyme disease bacteria by infected ticks
Havard University grants license to Beam Therapeutics to develop new base editing technology

Havard University grants license to Beam Therapeutics to develop new base editing technology

image_pdfDownload PDFimage_print

Harvard University has granted a worldwide license to Beam Therapeutics, Inc., to develop and commercialize a suite of revolutionary DNA base editing technologies for the treatment of human disease.

The versatile platform of base editing technologies was invented by David R. Liu, PhD, Professor of Chemistry and Chemical Biology, and visionary postdoctoral fellows and graduate students in his Harvard laboratory.

“We developed programmable molecular machines that go to a target site of our choosing in the genomic DNA of a cell and directly convert one base to another base without making a double-stranded break in the DNA,” said Liu, who is a cofounder of Beam.

The licensed technology platform, which includes access to base editing technologies and associated technologies that enhance the targeting scope of base editing, opens up a wide range of human genetic conditions to the therapeutic promise of genome editing.

“Base editing represents a powerful platform for addressing a large class of genetic diseases that are more difficult to tackle with other methods of genome editing,” said Vivian Berlin, Director of Business Development in Harvard’s Office of Technology Development (OTD).

“Genome-editing and base editing technologies exemplify the continuous, vital contributions of Harvard’s researchers to biomedical innovation, and the opportunities such advances create for economic development and societal benefit,” said Isaac T. Kohlberg, Senior Associate Provost and Chief Technology Development Officer at Harvard. “The opportunity here is not only to tackle disease but perhaps to fundamentally change the practice of medicine.”

Beam announced today that it has raised up to $87 million in Series A financing led by F-Prime Capital Partners and ARCH Venture Partners.

Game-changing innovation

In the human genome, tens of thousands of variations in the sequence of DNA bases — As, Cs, Gs, and Ts — are known to contribute to disease. The majority of disease-associated human DNA variations consist of point mutations — locations in the genome where a single base pair has been replaced by another. That’s true for mutations that are associated with conditions including neurodegenerative diseases, metabolic diseases, blood diseases, losses of vision or hearing, and thousands of other known diseases with a genetic component.

Genome editing technologies using the CRISPR platform in combination with enzymes like Cas9 and Cpf1 have shown great promise for adjusting genes through insertions or deletions of multiple nucleotides, but have had more difficulty correcting single nucleotides cleanly and efficiently. The suite of Harvard technologies licensed to Beam uniquely meets that need.

Liu likens it to having the right tool for the job. Existing methods of genome editing that attempt to correct point mutations, including those using the CRISPR/Cas9 system, use CRISPR as molecular scissors to make double-stranded breaks and then rely on an introduced DNA template to guide correction. Double-stranded breaks within the cell, however, trigger end-joining processes that reconnect the broken ends but introduce stochastic insertions and deletions while doing so. As a result, the precise correction of point mutations typically has to compete with the generation of these other undesired byproducts. In addition, precise correction with CRISPR/Cas9 typically relies on cellular components that are absent in cells not actively dividing — that is, most cells in the body.

“Instead of precisely fixing a disease-driving mutation in a specific gene, cutting a target site more often disrupts the gene or creates a mixture of mutated variants of the gene,” explained Liu.

In contrast, the base editing methods developed in Liu’s Harvard lab use an engineered multi-component protein that includes a modified form of Cas9 to unzip a targeted portion of the DNA helix, opening up a small bubble in which to perform surgery on a single base, without causing double-stranded breaks in DNA. Liu’s base editors then directly convert the target base from the mutated form to the corrected form, and in some cases also enlist an additional protein component to prevent the cell from undoing the correction. Meanwhile, the engineered Cas9 nicks the unedited strand of DNA, prompting the cell to mend that second strand with a base that complements the corrected base. The result is a double swap that permanently changes an entire base pair (such as A* T) to a different base pair (such as G* C). Liu’s team reported the development of various base editors in Nature in 2016, Nature Biotechnology in February 2017, Nature Communications in June 2017, Science Advances in August 2017, Nature in October 2017, and Nature in February 2018.

“Over the past year and a half, we’ve greatly expanded the scope of base editing technologies,” said Liu, “broadening their targeting scope, improving their target DNA specificity, and creating new classes of base editors that could have a substantial impact on the treatment of genetic diseases.”

“That’s the ultimate goal: in an unmodified organism, whether it’s a human or a plant or an animal, to be able to change a DNA base to another DNA base at will, cleanly, and with high efficiency,” Liu said. “If we can get there, I think the potential for societal benefit is high.”

Spurring rapid development

“Our goal is to see this innovation develop into transformative treatments for the widest possible range of human diseases,” said OTD’s Berlin. “Licensing the commercial rights to a new startup ensures a rapid mobilization of resources to fully develop and exploit the technology in this field.”

To that end, the agreement with Beam Therapeutics stipulates particular diligence obligations by which the company must demonstrate its progress toward developing products. It also stipulates mechanisms by which a third party can propose to develop a therapeutic product, either in partnership with Beam (via a collaboration or sublicense) or through a separate agreement with the University, if that program is not of serious interest to Beam. Meanwhile, academic science remains entirely unhindered; the University always retains the rights of researchers to continue to use the intellectual property for educational and not-for-profit research purposes, whether at Harvard or elsewhere. The intellectual property is also available for licensing on a non-exclusive basis for industrial research purposes.

Under the terms of the agreement, the University will receive a multimillion-dollar upfront licensing payment from Beam Therapeutics, with additional terms confidential. The compensation acknowledges the value Harvard has created through its pioneering research and will support continued scientific discovery and innovation on campus.

Source:

Beam Therapeutics receives Harvard license to use base editing technology to make precision genetic medicines

Tagged with:

About author

Related Articles