Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Researchers reveal mechanisms of periodic paralysis in people with rare genetic disorder

Researchers reveal mechanisms of periodic paralysis in people with rare genetic disorder

A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of Washington School of Medicine in Seattle have found.

The condition is called hypokalemic periodic paralysis. People who have this disorder also occasionally have low blood levels of potassium, a state called hypokalemia. The disease was known to stem from mutations that alter certain cell membrane proteins, but how the mutation changes the proteins’ function was not known.

“Our results reveal the mechanisms of periodic paralysis at the atomic level and suggest designs for drugs that may prevent this ion leak and provide relief to these patients,” said William A. Catterall, a professor of pharmacology at the UW School of Medicine who led the research.

The scientists report their findings in the journal Nature. Daohua Jiang and Tamer Gamal El-Din, postdoctoral researchers in the Catterall lab, are the lead authors.

In their resting state, muscle cells maintain a charge difference, or voltage, across their cell membranes. This voltage is created by differences in the concentrations of sodium and potassium ions inside and outside the cell.

This difference is maintained by a system of ion pumps that move ions in and out of the cell. Of these, the sodium-potassium pumps, which move sodium out of the cell in exchange for potassium, are especially important.

Because of this system, the concentration of potassium is higher inside the cell while the concentration of sodium is higher outside of the cell.

The interior of the cell is more negatively charged than the exterior because potassium continuously flows out of the cell. This charge difference generates a voltage across the membrane of about – 90 millivolts in skeletal muscle.

This transmembrane voltage, called the cell’s resting potential, serves as a battery that drives the molecular machines imbedded in the membrane. This generates electrical signals, which initiate muscle contraction.

In this process, chemical signals from a nerve cause chemically sensitive ion channels to open. Sodium ions then flow into the cell and lower the voltage difference across the nearby membrane. This change in voltage, in turn, is sensed by nearby voltage-gated sodium channels.

If the voltage change is large enough, sodium channels are triggered to open. More sodium flows into the cell. This process creates a change in the membrane potential that ripples down the length of the muscle cell. The “action potential” that is generated triggers muscle contraction.

The mutation that causes hypokalemic periodic paralysis affects a key functional part of the voltage-gated sodium channel, called the voltage sensor. It detects and responds to changes in membrane voltage by changing its molecular shape. The reconfiguration causes the channel to open and permits sodium ions to pass into the cell.

In their study, the researchers used a technique called X-ray crystallography to determine the structure of the normal and mutated versions of the voltage sensor at atomic resolution. They found that mutations responsible for hypokalemic periodic paralysis create a small hole through the center of the voltage sensor in the sodium channel protein. Sodium ions can continuously leak through this opening.

“This leak causes sustained membrane depolarization and action potential failure, thereby paralyzing the muscle,” Catterall said.

Under ordinary circumstances, the ion channels that allow potassium to flow out of cells and the sodium-potassium ion pumps are able to make up for this leakage, the researchers said.

But when extracellular potassium concentrations fall below normal, the cells can no longer compensate. This explains why individuals with this condition experience muscle weakness and paralysis when their blood potassium levels fall, Catterall said.

The researchers also showed that compounds containing a chemical group called guanidinium can block the pore created by the mutation and stop the sodium leak without altering the voltage sensor’s ability to function.

“Our high-resolution structural models may provide templates for drugs that mimic the effect of guanidinium, block the gating pore current, and could perhaps prevent or treat periodic paralysis,” Catterall said.

Source:

https://newsroom.uw.edu/news/study-reveals-why-rare-disorder-causes-sudden-paralysis

Tagged with:

About author

Related Articles