Breaking News
October 23, 2018 - Spectrum Pharmaceuticals Announces Release of Updated Poziotinib Data From MD Anderson Phase 2 Study in Non-Small Cell Lung Cancer Patients
October 23, 2018 - Cancer stem cells use ‘normal’ genes in abnormal ways
October 23, 2018 - Bad Blood: A conversation with investigative reporter John Carreyrou | News Center
October 23, 2018 - As U.S. fertility rates collapse, finger-pointing and blame follow
October 23, 2018 - Researchers develop promising targeted strategy to treat chemo-resistant blood cancer
October 23, 2018 - Pilot clinical trial shows effectiveness of bioelectronic medicine device for lupus
October 23, 2018 - Genentech’s combination therapy improves outcome in patients with non-squamous non-small cell lung cancer
October 23, 2018 - 11th World Stroke Congress examines high stroke impact in low- and middle-income countries
October 22, 2018 - Breast cancer survival could be extended with two new drug combinations
October 22, 2018 - Researchers discover how acne-causing bacteria resist treatment
October 22, 2018 - Cancer trial shows treating the prostate with radiotherapy improves survival
October 22, 2018 - New hope for a drug to treat lymphedema symptoms
October 22, 2018 - Immune-Based Treatment Helps Fight Aggressive Breast Cancer, Study Finds
October 22, 2018 - Takeda announces positive Phase 3 ALTA-1L data in first-line therapy for advanced ALK+ NSCLC
October 22, 2018 - Paternal exercise has significant impact on child’s lifelong metabolic health
October 22, 2018 - Targeting specific genomic mutation in breast cancer improves survival
October 22, 2018 - Loss of tumor protein p53 helps cancer cells grow in hostile environment
October 22, 2018 - IDT to demonstrate CRISPR expertise at European-focused events
October 22, 2018 - Breathing through the nose improves memory consolidation
October 22, 2018 - Recreational Marijuana Now Legal in Canada
October 22, 2018 - Scientists reveal drumming helps schoolchildren diagnosed with autism
October 22, 2018 - A stage IV cancer patient discusses what it means to live well with serious illness
October 22, 2018 - In Kids with Autism, Short Questionnaire May Detect GI Disorders
October 22, 2018 - Merck presents MK-1454 Phase 1 data for treatment of advanced solid tumors or lymphomas
October 22, 2018 - Aspirin may be effective in preventing blood clots after knee replacement
October 22, 2018 - Drug cocktail that increases lifespan discovered
October 22, 2018 - Gilead Sciences presents Phase 3 results of filgotinib in biologic-experienced rheumatoid arthritis at 2018 ACR/ARHP Annual Meeting
October 22, 2018 - Study shows potential positive impact of group prenatal care on birth outcomes
October 22, 2018 - Immunotherapy with pembrolizumab extends survival in metastatic or recurrent head and neck cancer
October 22, 2018 - Health Tip: Keep Ticks Away
October 22, 2018 - Obsessive-compulsive disorder – Genetics Home Reference
October 22, 2018 - Researchers find disrupted functional connectivity in cerebellum of adults with HF-ASD
October 22, 2018 - Deciphera presents Phase 1 clinical results of DCC-2618 in patients with gastrointestinal stromal tumors
October 22, 2018 - Combination of Opdivo and Yervoy shows four-year survival benefits in patients with advanced melanoma
October 22, 2018 - Overcoming bottlenecks in early drug discovery with the power of sound
October 22, 2018 - Scientists discover genes that contribute to ADHD development
October 22, 2018 - Incyte announces Phase 2 FIGHT-202 trial data in patients with cholangiocarcinoma
October 22, 2018 - FDA approves update to Rituxan label to include information on treatment of rare forms of vasculitis
October 22, 2018 - At-home biofeedback therapy effective in relieving difficult-to-treat constipation
October 22, 2018 - Merck presents KEYNOTE-057 trial results for patients with high-risk non-muscle invasive bladder cancer
October 22, 2018 - People with periodontal disease less likely to reach healthy blood pressure ranges
October 22, 2018 - Phase III LONSURF study shows progression-free survival in patients with refractory metastatic gastric cancer
October 22, 2018 - Primary care doctors ‘not doing enough’ to curb STDs
October 22, 2018 - Pfizer announces PALOMA-3 trial results in patients with HR+, HER2- metastatic breast cancer
October 22, 2018 - ImmunoGen announces study results of platinum-resistant ovarian cancer therapy at ESMO 2018 Congress
October 22, 2018 - Study findings could set new standard of care for advanced anal cancer
October 22, 2018 - Erlotinib improves progression-free survival in EGFR mutated NSCLC
October 22, 2018 - Pain, insomnia, and depression often drive osteoarthritis patients to seek medical care
October 22, 2018 - The International Society of Refractive Surgery honors Vivior Chairman with Casebeer Award
October 22, 2018 - Multi-strain probiotic helps reduce chemotherapy-induced diarrhea in cancer patients
October 22, 2018 - Study shows potential of avelumab plus axitinib as new treatment option for patients with advanced RCC
October 22, 2018 - Vertex gets European CHMP positive opinion for KALYDECO to treat patients with cystic fibrosis
October 22, 2018 - Phase III trial reports positive results with HDAC inhibitor in advanced breast cancer patients
October 22, 2018 - Prostate radiotherapy improves survival in men with low burden of metastatic disease
October 22, 2018 - Duration of respiratory disturbances may better predict mortality risk from OSA
October 22, 2018 - Free phone app helps low-income obese patients to lose weight
October 22, 2018 - Immunotherapy with nivolumab and ipilimumab may improve survival in patients with MSI-high metastatic colorectal cancers
October 22, 2018 - FOTIVDA expected to be included in new ESMO guidelines for advanced renal cell carcinoma
October 22, 2018 - Compression Collar May Protect Brain of Female Soccer Players
October 22, 2018 - Technique visualizes neuron communication
October 22, 2018 - Advancement in medical imaging methods for health care
October 22, 2018 - Takeda presents vedolizumab phase 3 VISIBLE 1 trial results for treatment of moderately to severely active ulcerative colitis
October 22, 2018 - Immunotherapy increases survival in some patients with metastatic triple negative breast cancer
October 22, 2018 - Exelixis presents CABOSUN and METEOR trial results in patients with advanced renal cell carcinoma
October 22, 2018 - LYNPARZA Phase III SOLO-1 results show improved outcome for patients with advanced BRCA-mutated ovarian cancer
October 22, 2018 - Brainlab unveils ExacTrac Dynamic at ASTRO meeting in San Antonio, Texas
October 22, 2018 - Not exercising is worse than smoking, diabetes or heart disease finds study
October 22, 2018 - Shorter course of trastuzumab could be an option for women with HER2+ early breast cancer
October 22, 2018 - Map of Mouse Hippocampus Could Be Weapon Against Alzheimer’s
October 22, 2018 - Psychotropic polypharmacy is common in Alzheimer’s disease
October 22, 2018 - Texas A&M and UTA establish Texas Genomics Core Alliance
October 22, 2018 - Analyzing mouse’s potential as animal model of decision-making
October 22, 2018 - Radiotherapy can prolong survival in prostate cancer
October 22, 2018 - A genetic mutation involved in relapse
October 21, 2018 - Report reveals growing impact of cannabis on young people
October 21, 2018 - NSF awards $5 million grant to help scientists magnify societal impact of research
October 21, 2018 - Fertility Rates Down for Each Urbanization Level 2007 to 2017
October 21, 2018 - Genetically engineered 3-D human muscle transplant in a murine model
October 21, 2018 - Moms’ tight work schedules may affect their children’s sleep
October 21, 2018 - AHA: No Direct Link Between Preeclampsia and Cognitive Impairment, Study Finds
Mapping the Genes Responsible for Pluripotency

Mapping the Genes Responsible for Pluripotency

image_pdfDownload PDFimage_print

An interview with Atilgan Yilmaz, PhD, conducted by Kate Anderton, BSc

What are parthenogenetic haploid human pluripotent stem cells (hPSCs)? How do they differ from normal embryonic stem cells?

Pluripotent stem cells are those that are located in the inner cell mass of the early embryo. They are present within the first week of development and can develop into virtually any adult cell type in the human body.

Credit: Kateryna Kon/Shutterstock.com

Ploidy refers to the number of chromosomes present. Normal embryonic stem cells comprise two sets of chromosomes, one from the mother, and one from the father. Haploid cells contain a single copy of the genome, from one parent.

Parthenogenetic haploid human stem cells are those which contain only the maternal copy of the genome. They are generated using human oocytes which are activated chemically or using electrical stimuli. By activating these oocytes we can obtain early embryos which would otherwise fail later on and isolate the resulting pluripotent stem cells.

Overall, parthenogenetic haploid human pluripotent stem cells are very similar to diploid human embryonic stem cells in the genes that they express and their capacity to differentiate.

However, there are some minor differences.

For instance, diploidy allows for genomic imprinting. This is where only the maternal or paternal copy of the gene is expressed. Often, the expression of these genes is controlled by the dominant allele, so parthenogenetic haploid human pluripotent stem cells lack paternally imprinted genes because there’s no contribution from the sperm (and therefore the father) in these cells.

Another interesting difference with these cells is that normal diploid embryonic stem cells which are, let’s say female, will include two X chromosomes. However, because these are haploid cells, only one X chromosome originating from the oocyte is used.

As this is the only X chromosome, there’s no option of deactivating it, which somewhat raises the expression of the X chromosome relative to the rest of the genes. The ratio of X chromosome genes versus the autosomes is thus higher in haploid human embryonic stem cells.

Please describe the methodology you used to create the hPSCs.

The oocytes are tricked into the fertilization process. This involves extracting mature metaphase two oocytes from human donors which were activated using either chemical methods, such as calcium ionophores, or electrical pulses.

Following this, the cells start dividing in order to generate the early embryo. The embryos, or the oocytes, are then allowed to develop up to the blastocyst stage of the embryo, which contains the inner cell mass, from which we can isolate the embryonic stem cells.

How were you able to prove that the hPSCs were pluripotent?

Pluripotent cells are those which can differentiate into any adult cell type in the human body. Proving it involves the generation of multiple cell types from the same hPSC line and this is exactly what was done in the study we published in Nature two years ago.

We showed that the cells were able to differentiate into examples of the three main germ layers of the embryo; endoderm, ectoderm and mesoderm, as well as specific cell types from each germ layer.

Our study also showed these cells could not only differentiate into specific cell types, but they were also able to retain their haploidy during differentiation. This was interesting to observe as it directly contrasted what was previously shown in a mouse model.

A few years ago, these isolated cells were injected into animals for an assay called teratoma formation. Teratoma assays are one of the best assays for demonstrating the pluripotency of cells. The assay enables cells injected into mice to differentiate in vivo in a tissue environment.

Once teratoma tumours form, they are checked to see whether any pluripotent cells remain in the tissue, or whether all of them were able to differentiate into a germ layer.

When this assay was carried out, nearly all of the cells were found to have differentiated and the expression of pluripotency markers had diminished.

Why are hPSCs such an advancement in research?

hPSCs are an efficient tool for studying gene function. Haploid cells only have one copy of each gene, and if that single copy is mutated there won’t be any backup to confuse the readout of the experiments. Therefore, it is a very clean system for deactivating genes and studying their function.

Please describe your recent research in the field of stem cell genomics

Advanced developments in genetic technologies, such as CRISPR/Cas9, allowed us to target every single gene in the human genome, and study their function in the context of the growth of human embryonic stem cells.

We were able to establish which out of the nearly 20,000 genes in the human genomes supports the growth or the survival of these cells, and which proportion puts them at a disadvantage. Think of it as a Darwinian experiment in which we took a large pool of cells and mutated a different gene in every single cell.

Using a large gene-editing tool, we reached close to the full human genome and targeted more than 18,000 genes. We turned them off throughout different cells and allowed the cells to grow.

We analyzed the cell populations at the beginning and the end, and found that around nine percent of the entire human genome is essential for the normal growth and survival of human embryonic stem cells. Removing this percentage of roughly 18,000 genes would thus be detrimental to cell growth.

Meanwhile, another finding showed that if a different five percent of genes are removed, cells experience accelerated growth, meaning they restrict the growth of these cells when functioning normally.

This is the general view of the study, though we also found that among the essential genes, 9% cause autosomal recessive human disorders that have a growth retardation phenotype. We found that one fifth of these disorders can often affect the growth of the human embryonic stem cells.

How did you use CRISPR-Cas9 in your research?

We utilized a CRISPR-Cas9 tool set that was generated in a previous study. We had roughly ten guide RNAs for each gene we targeted, meaning we used a pool of 180,000 different guide RNAs in total. The guide RNAs were introduced into the cells using a lentivirus.

We were the first to use karyotypically normal cells with a stable genome, giving more medical meaning to this study. Using the CRISPR/Cas9 and gene editing technology on haploid embryonic stem cells was another novel feature of our research that set it apart from previous studies.

What areas of research can the newly generated “atlas of the human genome” be applied to?

There are many groups in several institutions that work on the functions of single genes. What we did here was basically generate this atlas of the human genome, which describes the necessary genes for embryonic development.  

Let’s say someone is working on a gene that we identified to be essential for the growth of any cell type. Using our data, they could easily find out the function of that gene and use it as a starting point for their research.

Secondly, studies regarding certain human genetic disorders with growth retardation phenotypes might benefit from an additional cell culture model because, as I said earlier, we showed that for around one fifth of such human genetic disorders, the genes causing these disorders affect the growth of the human embryonic stem cells.

This means we can use embryonic stem cells to study the growth phenotypes of these diseases instead of trying to differentiate the specific cell types affected in that disease.

Furthermore, even though recent decades of research have identified lots about pluripotency, we still don’t have a complete picture. I think our research will help achieve a comprehensive understanding of pluripotent stem cells. Aside from clinical applications, we also want to use hPSCs to understand early human development from a basic science point of view.

Our study has established a smaller group of genes that are specifically expressed in human embryonic stem cells, and identified the genes or gene networks needed to be pluripotent. This is a very important step towards understanding pluripotency on the genetic level and what networks are necessary for developing this plastic nature.

Credit: Vshivkova/Shutterstock.com

What are the next steps for your research?

Research always opens up more questions and we’re lucky to have so much data from our research and so many leads to follow. Some of the essential genes that we defined specifically for human embryonic stem cells were either not inadequately characterized or not characterized at all before our study. Now, we want to learn more about their function and their effects on pluripotency.

We have also developed a tool to study and explore genetic screens. Positive selection screens have a big pool of mutant cells each with a different mutation, and then a drug, such as a toxic drug used for chemotherapy for example, is used which kills most of the cells. Those that survive will have some sort of resistance because of the mutation.

By running such genetic screens, we can identify mechanisms of different drugs that are used in medicine. For instance, we could use the tool as a model to study chemotherapy resistance, or the developmental roles of particular genes in the embryo.

Where can readers find more information?

About Dr Atilgan Yilmaz

Atilgan is a postdoctoral fellow at the Azrieli Center for Stem Cells and Genetic Research at the Hebrew University of Jerusalem.

He completed his doctoral studies at the Department of Molecular Biology, Cell Biology and Biochemistry at Brown University working on a therapy model of Duchenne Muscular Dystrophy and a novel cell signaling pathway in muscle cell progenitors and differentiated muscle cells.

Following his doctoral studies, he moved to the Department of Biosystems Science and Engineering at ETH Zurich to pursue a postdoctoral position in which he explored the reversal of cell state in differentiated muscle cells by either genetic or pharmacological induction.

His current research focuses on understanding pluripotency and cell-state transitions during early human development.

Tagged with:

About author

Related Articles