Breaking News
June 24, 2018 - Enlist a Pharmacist to Help Manage High Blood Pressure
June 24, 2018 - Genes found related to the reduction of proteins that contribute to Alzheimer’s onset
June 24, 2018 - 1 in 5 immigrant children detained during ‘zero tolerance’ border policy are under 13
June 24, 2018 - Personal automated cell lab assistant from Leica saves time with quality results
June 24, 2018 - Drug use can have social benefits, and acknowledging this could improve rehabilitation
June 24, 2018 - AMSBIO introduces MyEZGel 3D-iPSC Matrix for more accurate in vivo predictions
June 24, 2018 - RaySearch releases new RayStation 8A to expand support for TomoTherapy platform
June 24, 2018 - Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
June 24, 2018 - Researchers discover new type of cell that hinders formation of fat cells
June 24, 2018 - Scientists develop unique program to predict a form of Parkinson’s disease
June 24, 2018 - Adult Obesity Prevalence Varies With Level of Urbanization
June 24, 2018 - Picking an exercise boot camp
June 24, 2018 - Researchers outline a connection between subplate neurons and brain disorders
June 24, 2018 - Four cups of coffee a day shown to protect heart muscle
June 24, 2018 - ‘Antifreeze’ molecules may hold key to better treatments for brain injuries
June 24, 2018 - Opening onsite health clinics for workers can cut health care costs
June 24, 2018 - Glooko to demonstrate new version of diabetes management mobile application at ADA meeting
June 24, 2018 - Florida Teen First Human Case of Another Mosquito-Borne Virus
June 24, 2018 - Blood type O patients may have higher risk of death from severe trauma
June 24, 2018 - New studies on molecular and cellular proteomics
June 24, 2018 - Algorithm predicts dangerous low blood pressure during surgery
June 24, 2018 - Herpes may play role in pathogenesis of Alzheimer’s
June 24, 2018 - Inaccurate measurement of sodium intake may account for paradoxical results, study suggests
June 24, 2018 - Aquinnah Pharmaceuticals wins NINDS grant to advance novel therapies for ALS
June 24, 2018 - Study upends conventional view of opioid mechanism of action
June 24, 2018 - Floppy eyelids may be sign of sleep apnea, study finds
June 23, 2018 - Researchers highlight new nurse training model to address shortage of primary care
June 23, 2018 - New Olympus cellSens 2.1 speeds up image analysis
June 23, 2018 - Attitudes Among Obese Are Not Aligned With Healthy Living
June 23, 2018 - Early birds less prone to depression
June 23, 2018 - Scientists use novel approach to uncover how brain networks interact to make word-choice decisions
June 23, 2018 - Researchers discover shared genetic basis for psychiatric disorders
June 23, 2018 - Study shows fat cells increase in size and number upon exposure to fracking chemicals
June 23, 2018 - Water-limited landscapes can facilitate disease transmission
June 23, 2018 - Exercise May Ease Inflammation Tied to Obesity
June 23, 2018 - Is it their own fault?! How people judge the exclusion of others
June 23, 2018 - Researchers use advanced technology to identify proteomes of Th17 and iTreg cells
June 23, 2018 - Researchers develop low-cost plastic sensors to monitor wide range of health conditions
June 23, 2018 - Lipid-scrambling DNA enzyme outperforms naturally occurring counterpart, say researchers
June 23, 2018 - Apps for children should emphasize parent and child choice, researchers say
June 23, 2018 - Teenage girls report higher degree of daytime sleepiness than boys
June 23, 2018 - Protein Data Bank at Rutgers impacts research, education and drug discovery
June 23, 2018 - Study unravels new piece of information in the Huntington’s disease puzzle
June 23, 2018 - Scientists develop new device to test cancer drug combinations quickly and cheaply
June 23, 2018 - Neural Analytics wins CE Mark for NeuralBot System
June 23, 2018 - Infant omega-3 supplementation tied to decreased waist size
June 23, 2018 - Massive analysis of genomes reveals insights into genetic overlap among psychiatric diseases
June 23, 2018 - New therapeutic approach may delay neurodegeneration in rare genetic disease
June 23, 2018 - Broken shuttle protein may hinder learning in patients with brain disorders
June 23, 2018 - Study finds increase in daily cannabis use among American adults
June 23, 2018 - Researchers create electronic skin that brings back real sense of touch to prosthetic limbs
June 23, 2018 - FIRS: Guidance Offered for Protecting Youth From E-Cigarettes
June 23, 2018 - Scientists unravel molecular mechanisms of Parkinson’s disease
June 23, 2018 - When the Heart Stops, Drugs Often to Blame
June 23, 2018 - Scientists show that a key Parkinson’s biomarker can be identified in the retina
June 23, 2018 - Study finds factors underlying current rise in radicalization among European youth
June 23, 2018 - New study finds higher heart disease risk in bisexual men
June 23, 2018 - Coconut oil diet increases vitality, lifespan of fruit flies with peroxisomal disorder
June 23, 2018 - Jumping genes or transposons and their role in the genetic code
June 23, 2018 - The Current issue of “The view from here” is concerned with Therapeutics
June 23, 2018 - Abnormal lipid metabolism in fat cells predicts future weight gain and diabetes in women
June 23, 2018 - Alcohol problems linked to sex without condom use among black gay men
June 23, 2018 - DNA patterns in circulating blood cells can help identify spastic cerebral palsy
June 23, 2018 - Unsubstantiated health claims widespread within weight loss industry
June 23, 2018 - FDA grants marketing authorization for use of two catheter-based devices in hemodialysis patients
June 23, 2018 - An ingrown toenail not the same as a bypass
June 23, 2018 - Study suggests proteinuria lowering as important target in managing pediatric CKD
June 23, 2018 - Dynamic model helps make predictions about gut microbiome
June 23, 2018 - Research consortium wins £2.9 million to help tackle antibacterial resistance in Thailand
June 23, 2018 - Schizophrenia patients account for over 1 in 10 suicide deaths, study shows
June 23, 2018 - Overdose risk increases five-fold with concurrent opioid and benzodiazepine use
June 23, 2018 - FDA Alert: Kratom (mitragyna speciosa) powder products by Gaia Ethnobotanical: Recall
June 23, 2018 - Study highlights inadequate effort of health care insurers to combat opioid epidemic
June 23, 2018 - CDC chief asks for, and gets, cut to his record $375K pay
June 22, 2018 - Novel cellular pathway may clarify how arterial inflammation develops into atherosclerosis
June 22, 2018 - Pioneering exercise program improves physical, mental health of elderly people living in care homes
June 22, 2018 - Rutgers Cancer Institute educates childhood cancer survivors about late effects of treatment
June 22, 2018 - Study tests accuracy of device designed to detect heart dysfunction in childhood cancer survivors
June 22, 2018 - Study links annual haze with increased hospitalizations for respiratory problems
June 22, 2018 - Robotic surgery appears to be as effective as open surgery in treating bladder cancer
Scientists create small, self-contained spaces inside mammalian cells

Scientists create small, self-contained spaces inside mammalian cells

image_pdfDownload PDFimage_print

How to install new capabilities in cells without interfering with their metabolic processes? A team from the Technical University of Munich (TUM) and the Helmholtz Zentrum München have altered mammalian cells in such a way that they formed artificial compartments in which sequestered reactions could take place, allowing the detection of cells deep in the tissue and also their manipulation with magnetic fields.

Prof. Gil Westmeyer, Professor of Molecular Imaging at TUM and head of a research team at the Helmholtz Zentrum München, and his team accomplished this by introducing into human cells the genetic information for producing bacterial proteins, so-called encapsulins, which self-assemble into nanospheres. This method enabled the researchers to create small, self-contained spaces – artificial cellular compartments – inside mammalian cells.

Protected areas with new properties

The great strength of the little spheres is that they are non-toxic to the cell and enzymatic reactions can take place inside them without disturbing the cell’s metabolic processes. “One of the system’s crucial advantages is that we can genetically control which proteins, for example, fluorescent proteins or enzymes, are encapsulated in the interior of the nanospheres,” explains Felix Sigmund, the study’s first author. “We can thus spatially separate processes and give the cells new properties.”

But the nanospheres also have a natural property that is especially important to Westmeyer’s team: They can take in iron atoms and process them in such a way that they remain inside the nanospheres without disrupting the cell’s processes. This sequestered iron biomineralization makes the particles and also the cells magnetic. “To render cells visible and controllable remotely by making them magnetic is one of our long-term research goals. The iron-incorporating nanocompartments are helping us to take a big step towards this goal,” explains Westmeyer.

Magnetic and practical

In particular, this will make it easier to observe cells using different imaging methods: Magnetic cells can also be observed in deep layers with methods that do not damage the tissue, such as Magnetic Resonance Imaging (MRI). In collaboration with Dr. Philipp Erdmann and Prof. Jürgen Plitzko from the Max Planck Institute of Biochemistry, the team could additionally show that the nanospheres are also visible in high-resolution cryo-electron microscopy. This feature makes them useful as gene reporters that can directly mark the cell identity or cell status in electron microscopy, similar to the commonly used fluorescent proteins in light microscopy. Moreover, there are even additional advantages: Cells that are magnetic can be systematically guided with the help of magnetic fields, allowing them to be sorted and separated from other cells.

Use in cell therapy conceivable

One possible future use of the artificial cellular compartments is, for example, cell immunotherapies, where immune cells are genetically modified in such a way that they can selectively destroy a patient’s cancer cells. With the new nanocompartments inside the manipulated cells, the cells could in the future be possibly located easier via non-invasive imaging methods. “Using the modularly equipped nanocompartments, we might also be able to give the genetically modified cells new metabolic pathways to make them more efficient and robust,” explains Westmeyer. “There are of course many obstacles that have to be overcome in preclinical models first, but the ability to genetically control modular reaction vessels in mammalian cells could be very helpful for these approaches.”

Source:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34644/

Tagged with:

About author

Related Articles