Breaking News
August 14, 2018 - In the addiction battle, is forced rehab the solution?
August 14, 2018 - Busting myths about milk – Scope
August 14, 2018 - Platelet-rich plasma does not enhance cartilage formation capabilities of stem cells
August 14, 2018 - Wearable devices and ‘mhealth’ technology emerge as promising tools for better health
August 14, 2018 - Phase 2 Clinical Data Published Showing Summit’s Ridinilazole Preserved Gut Microbiome of Patients with CDI
August 14, 2018 - Cardiac progenitor cells undergo a cell fate switch to build coronary arteries
August 14, 2018 - Revealed: The molecular mechanism underlying hypertrophic cardiomyopathy, or “workaholic heart”
August 14, 2018 - Diabetes epidemic in Guatemala driven by aging, not obesity
August 14, 2018 - New technology shows potential to streamline the analysis of proteins
August 14, 2018 - Rethinking the stroke rule ‘time is brain’
August 14, 2018 - Incidence of coronary artery compression in children may be more common than previously thought
August 14, 2018 - Study helps to better understand disease caused by Alpha-1 antitrypsin deficiency
August 14, 2018 - AI platform identifies acute neurological illnesses faster than human diagnosis
August 14, 2018 - American College of Rheumatology receives grants to support development of lupus clinical trials
August 14, 2018 - New study explains why women get more migraines than men
August 14, 2018 - American Heart Association Urges Screen Time Limits for Youth
August 14, 2018 - Brief interventions during routine care reduce alcohol use among men with HIV
August 14, 2018 - New genome analysis could identify people at higher risk of common deadly diseases
August 14, 2018 - NIH grant for Mount Sinai to study use of inhaled corticosteroids for treatment of sickle cell disease
August 14, 2018 - Daicel supplies free nanodiamond samples to international researchers
August 14, 2018 - Switching anti-psychotic drugs in first-episode schizophrenia patients does not improve clinical outcomes
August 14, 2018 - Study to examine whether modulating gut bacteria can improve cardiac function in heart failure patients
August 14, 2018 - AI technology could hold key to improving health services
August 14, 2018 - One out of two children not getting enough nutrients needed for their health
August 14, 2018 - Mono-antiplatelet therapy after aortic heart valve replacements may work as well as two drugs
August 14, 2018 - Aid-in-dying patient chooses his last day
August 14, 2018 - Exercise Really Can Chase Away the Blues, to a Point
August 14, 2018 - Surgical mesh implants may cause autoimmune disorders
August 14, 2018 - Researchers develop revolutionary zebrafish model to gain more insight into bone diseases
August 14, 2018 - Researchers discover secret communication hotline between breast cancers and normal cells
August 14, 2018 - Study examines how a person adapts to visual field loss after stroke
August 14, 2018 - Researchers show how specialized nucleic acid-based nanostructures could help target cancer cells
August 14, 2018 - Reducing opioid prescriptions for one operation can also spill over to other procedures
August 14, 2018 - E-cigarettes not so safe but still better than cigarettes
August 14, 2018 - Researchers find link between common ‘harmless’ virus and cardiovascular damage
August 14, 2018 - Initiation of PIMs associated with higher risk of fracture-specific hospitalizations and mortality
August 14, 2018 - Genetically modified mosquitoes and special bed nets help tackle deadly diseases
August 14, 2018 - Advances in treating hep C lead to new option for transplant patients
August 14, 2018 - Study finds quality of doctor-patient discussions about lung cancer screening to be ‘poor’
August 14, 2018 - MSU researchers uncover the effects of aging on regenerative ability of kidneys
August 14, 2018 - Better conditioning, throwing mechanics can help reduce elbow injuries in young baseball pitchers
August 14, 2018 - Brain game doesn’t offer brain gain
August 14, 2018 - Reproductive choices facing women with disabilities require careful consideration
August 14, 2018 - Scientists pinpoint the cause of a rare childhood seizure disorder
August 14, 2018 - Lumpectomy plus radiation associated with reduced risk of breast cancer death, study finds
August 14, 2018 - UAB study shows how ion channel differentiates newborn and mature neurons in the brain
August 14, 2018 - Experts highlight key knowledge gaps that need to be addressed in Ebola vaccine research
August 14, 2018 - Discovery could lead to new drugs against infection and inflammation
August 14, 2018 - Infection Prevention Differs Between Small, Large Hospitals
August 14, 2018 - Mom still matters—In study, young adults tended to prioritize parents over friends
August 14, 2018 - Deep brain stimulation might benefit those with severe alcoholism, preliminary studies show
August 14, 2018 - Study finds increased rate of repeat pregnancies in women with intellectual and developmental disabilities
August 14, 2018 - Lighter sedation fails to reduce risk of postoperative delirium in older patients
August 13, 2018 - Asking better questions about person’s memory could improve doctors’ understanding of patients
August 13, 2018 - U.S. Trauma Doctors Push for Stricter Gun Controls
August 13, 2018 - Asthma and flu: a double whammy
August 13, 2018 - 5 Questions: Donna Zulman on engaging high-need patients in intensive outpatient programs | News Center
August 13, 2018 - Behavioral Nudges Lead to Drop in Prescriptions of Potent Antipsychotic
August 13, 2018 - Potential New Class of Drugs May Reduce Cardiovascular Risk by Targeting Gut Microbes
August 13, 2018 - How to get your kids to eat better
August 13, 2018 - The importance of hearing your patients
August 13, 2018 - Transmission of F. tularensis unlikely to happen through the food chain
August 13, 2018 - Researchers discover epigenetic mechanism underlying ischemic cardiomyopathy
August 13, 2018 - Adolescent health programs receive only a tiny share of international aid, finds research
August 13, 2018 - Fracture risk increases by 30% after gastric bypass, study shows
August 13, 2018 - Quality-improvement project to standardize feeding practices helps micro preemies gain weight
August 13, 2018 - Long-term cannabinoid exposure impairs memory, study shows
August 13, 2018 - New intervention to reduce risk of HIV in young transgender women
August 13, 2018 - Japan human trial tests iPS cell treatment for Parkinson’s
August 13, 2018 - Altered nitrogen metabolism may contribute to emergence of new cancer mutations
August 13, 2018 - Cycling provides greatest health benefits, study finds
August 13, 2018 - Scientists discover biomarker for kidney cancer
August 13, 2018 - New test predicts the risk of serious disease before symptoms appear
August 13, 2018 - Cianna Medical receives FDA 510(k) clearance to extend indication of SCOUT reflector for use in soft tissue localization
August 13, 2018 - Ground-breaking discovery offers new hope for treatment of Alzheimer’s, other neurological diseases
August 13, 2018 - Medical nutrition therapy provided by RDNs benefits patients with chronic kidney disease
August 13, 2018 - Prenatal Tdap vaccination not linked with increased risk of autism in children, study shows
August 13, 2018 - One-Third of Canadian Patients Get Hip Fx Repair Within 24 Hours
August 13, 2018 - ANA (Antinuclear Antibody) Test: MedlinePlus Lab Test Information
August 13, 2018 - Traffic jams in the brain
Study links cell size with commitment to division

Study links cell size with commitment to division

image_pdfDownload PDFimage_print

How does a cell know when to divide? We know that hundreds of genes contribute to a wave of activity linked to cell division, but to generate that wave new research shows that cells must first grow large enough to produce four key proteins in adequate amounts. The study, published today in Cell Systems, offers a path for controlling the balance between cell growth and division, which is implicated in countless diseases, including cancers.

“For years we have known that cells must reach a size threshold prior to cell division, but how cells know when they reach that threshold has been a mystery,” said Catherine Royer, lead author, along with Mike Tyers of the University of Montreal. Royer is Biocomputation and Bioinformatics Constellation Professor and Professor in the Department of Biological Sciences at Rensselaer Polytechnic Institute, and member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS). “Something sets the threshold and something senses it. This research establishes the mechanism behind this core machinery in budding yeast cells.”

The research also resolves the question of why cells with access to a nutrient-poor environment divide at a smaller size. Both findings are related to the abundance of the four key proteins required.

“Many diseases include an element of abnormal cell size and growth, and at the moment we have few means of controlling those aspects of cell growth,” said Deepak Vashishth, CBIS director. “This research marks a clear path toward targeting transcription factors to change that outcome. It’s a clear example of how translational medicine gets its start at Rensselaer.”

Royer and her team, which included researches from Rensselaer and the Université de Montréal, examined yeast cells, which divide by budding. As with most cells, yeast cells must first synthesize the necessary resources and grow in size, a phase of cell cycle known as G1. About 200 genes must be activated at the end of G1, and the research team examined five proteins–the transcription factors SBF and MBF, the transcriptional repressor Whi5, and the G1 cyclins Cin1 and Cin2–that are collectively required to initiate transcription of those 200 genes.

The researchers used a particle-counting technique to measure the absolute concentration of each of the five proteins present in cells as they grew in size. The technique relies on creating a very small optical volume and scanning “Number and Brightness” microscopy to gather data on light emitted from fluorescent-tagged proteins in a select volume of the cell. Calculations based on the relationship between average light intensity and fluctuations in light intensity reveal the number of molecules in that volume.

Royer found that as the cells grew in size, molecules of four of the five proteins examined reached a number great enough to bind to the estimated 400 binding sites on the 200 genes the proteins control. Commitment to division was triggered when the cell grew large enough to saturate the binding sites.

“In a small cell, there just weren’t enough of them to bind to all of the sites. As the cell grows, the concentration remains the same, but having the same concentration in a larger cell means that there are more molecules, and eventually enough to bind to the available sites,” said Royer. “It turns out that this system is a simple titration mechanism. It’s very straightforward biochemistry.”

The team grew cells in growth medium–a liquid designed to support yeast cell growth–with different kinds of nutrients. When the team examined cells grown in medium with poor nutrients, they discovered that those cells were “up-regulating,” producing more molecules of the four key proteins given their cell size, and therefore triggering commitment to division at a smaller size. The finding explains why cells grown in a nutrient-poor environment are smaller in size.

“It’s counter-intuitive, but at a certain level, it makes sense,” Royer said. “If you’re a yeast cell, and you are in a nutrient-poor environment, your best bet is survival of the colony rather than the individual. And so you divide at a smaller size to support the colony.”

“G1/S Transcription Factor Copy Number is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast” appears in Cell Systems. Continued research will be funded through the National Science Foundation.

Research on cell size homeostasis fulfills The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be adequately addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration — working with partners across disciplines, sectors, and geographic regions — to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer. Research at Rensselaer addresses some of the world’s most pressing technological challenges — from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.

Source:

https://news.rpi.edu/content/2018/05/23/how-cell-knows-when-divide

Tagged with:

About author

Related Articles