Breaking News
November 20, 2018 - Health sector coalition urges Government to safeguard patients in future UK-EU relationship
November 20, 2018 - Study evaluates second-hand marijuana smoke exposure among children
November 20, 2018 - Scientists identify three genes responsible for recurrent molar pregnancies
November 20, 2018 - Researchers identify multisystem disorder caused by bi-allelic variants in CCDC47 gene
November 20, 2018 - Dining Out With Allergies Is Tough, But These Steps Can Help
November 20, 2018 - Breastfeeding protects infants from antibiotic-resistant bacteria
November 20, 2018 - AI matched, outperformed radiologists in screening X-rays for certain diseases | News Center
November 20, 2018 - Adolescents increasingly choose marijuana over cigarettes, alcohol
November 20, 2018 - World’s first medical imaging scanner produces diagnostic scan of the whole human body
November 20, 2018 - Cytocybernetics receives NIMH award to move into neuronal drug development
November 20, 2018 - Recreational drug may help people regain trust in others
November 20, 2018 - Researchers identify gene vital for post-stroke recovery
November 20, 2018 - Scientists identify novel target for neuron regeneration, functional recovery in spinal cord injury
November 20, 2018 - Skeletal imitation reveals how bones grow atom-by-atom
November 20, 2018 - Autism behaviors show unique brain network fingerprints in infants
November 20, 2018 - Location matters for inflammation clearance
November 20, 2018 - Towards finding a druggable cancer target
November 20, 2018 - Ultragenyx Announces Intent to Submit New Drug Application to U.S. FDA for UX007 for the Treatment of Long-chain Fatty Acid Oxidation Disorders in Mid-2019
November 20, 2018 - Cooling ‘brains on fire’ to treat Parkinson’s
November 20, 2018 - Less pollution could increase the average lifespan of Copenhageners by an entire year in 2040
November 20, 2018 - Abramson Cancer Center becomes the 28th member institution of National Comprehensive Cancer Network
November 20, 2018 - The plug and play time-resolved spectrometer from PicoQuant
November 20, 2018 - Breakthrough technology offers new hope to people with glaucoma, retinitis and macular degeneration
November 20, 2018 - New report highlights key focus areas to help cancer screening realize its full potential
November 20, 2018 - International experts to discuss strategies to maintain spatial orientation in old age
November 20, 2018 - Low-protein, high-carb diet may promote healthy brain ageing
November 20, 2018 - Scientists discover new inhibitor that decreases lung inflammation
November 20, 2018 - Participation project calls for relaxing research ban on germline interventions
November 20, 2018 - Karyopharm’s Selinexor Receives Fast Track Designation from FDA for the Treatment of Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma
November 20, 2018 - Arthritis by the Numbers: Book of Trusted Facts & Figures
November 20, 2018 - Drug homing method helps rethink Parkinson’s
November 20, 2018 - AHF commends the passage of global AIDS funding in the House, calls for swift approval
November 20, 2018 - The search for new psychiatric disorder treatments
November 20, 2018 - New research offers hope for simpler way to diagnose and treat cancer
November 20, 2018 - Study sheds light on the infection mechanism of influenza virus
November 20, 2018 - Storage failures of eggs and embryos gain a new perspective
November 20, 2018 - Buyers of short-term health plans: Wise or shortsighted?
November 20, 2018 - Study indicates that frogs in virus-exposed groups breed at young age
November 20, 2018 - FDA Alerts Health Care Professionals and Patients Not To Use Sterile Drug Products from Pharm D Solutions
November 20, 2018 - Asthma may contribute to childhood obesity epidemic
November 20, 2018 - Live probiotics can change existing gut flora and alter immune response
November 20, 2018 - Researchers to explore the enigmatic role of unstructured protein in regulating circadian function
November 20, 2018 - Many patients with adenomas do not receive colonoscopy within recommended time frame
November 20, 2018 - Drug used to treat PTSD does not reduce suicidal thinking, may worsen nightmares and insomnia
November 20, 2018 - In-person social contact may offer protection against depression and PTSD symptoms
November 20, 2018 - Routine HCV testing in correctional facilities can best identify and treat disease, say researchers
November 20, 2018 - Molecular DNA analysis could facilitate more accurate prognosis, treatment of aggressive brain tumors
November 20, 2018 - Breast Cancer Recurrence Rate Not Up With Autologous Fat Transfer
November 20, 2018 - Beta 2 Microglobulin (B2M) Tumor Marker Test: MedlinePlus Lab Test Information
November 20, 2018 - Could bariatric surgery make men more virile?
November 20, 2018 - Urine test to check if patients take their medications will save the NHS money, say researchers
November 20, 2018 - Study reveals impact of residual inflammatory risk on clinical outcomes after PCI
November 20, 2018 - RNAi therapy shown to alleviate preeclampsia
November 20, 2018 - Replacement of dysfunctional microglia has therapeutic potential for neurodegenerative diseases
November 20, 2018 - Forming 3D Neuronal Models of the Brain
November 20, 2018 - Shoulder ultrasounds could be used to predict diabetes
November 20, 2018 - SGLT2 Inhibitors for Diabetes Linked to Increased Risk for Amputation
November 20, 2018 - Stem cell transplant cements Arizona men’s father-son bond
November 20, 2018 - Scientists try to develop portable systems that can quickly produce biologics on demand
November 20, 2018 - Automating Data Capture and Image Analysis in Continuous Experiments
November 20, 2018 - New drug shows promise for treating people with peanut allergy
November 20, 2018 - Researchers develop novel mouse model to study immunomodulatory therapies
November 20, 2018 - “Britain must not go backward on antibiotic controls to appease US trade deals” – Jim Moseley, CEO of Red Tractor
November 20, 2018 - Widespread errors in ‘proofreading’ cause inherited blindness
November 20, 2018 - Reaping the benefits of living longer
November 20, 2018 - New Program Hopes to Make Early Detection and Treatment of ALS a Reality
November 19, 2018 - Artificial bone-like substance mimics the way real bone grows at atomic level
November 19, 2018 - FDA Grants Orphan Drug Designation To RGX-181 Gene Therapy For The Treatment Of CLN2 Form Of Batten Disease
November 19, 2018 - Systemic mastocytosis – Genetics Home Reference
November 19, 2018 - Eye trauma secondary to falls in older adults increasing
November 19, 2018 - Empowering women in India to improve their health: A Q&A
November 19, 2018 - Researchers have trained a computer to analyze breast cancer images and classify tumors
November 19, 2018 - New glucose binding molecule could be key to better metabolic control for diabetics
November 19, 2018 - Biologists uncover novel genetic control of lipid maintenance and its potential connection to lifespan
November 19, 2018 - Warmer winters may set scene for higher rates of violent crimes
November 19, 2018 - Personalized program of physical exercise effective in reversing functional decline in the elderly
November 19, 2018 - Acacia Pharma Resubmits Barhemsys New Drug Application
November 19, 2018 - PDL1 (Immunotherapy) Tests: MedlinePlus Lab Test Information
November 19, 2018 - Transforming pregnancy research with a smartphone app
November 19, 2018 - Stanford Medicine magazine explores how digital technology is changing health care
Scientists create universal assembly method to enhance cancer therapy and diagnostics

Scientists create universal assembly method to enhance cancer therapy and diagnostics

image_pdfDownload PDFimage_print

Biophysicists have developed a method for modifying the surface of micro- and nanoparticles — tiny structures measuring between a thousandth and a millionth of a millimeter — by covering them with biological molecules. Engineered in this way, the particles can serve as both therapeutic and diagnostic agents, delivering drugs to cancer cells.

The paper was published in the journal ACS Applied Materials & Interfaces. Its authors are researchers from the Moscow Institute of Physics and Technology (MIPT), the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS), National Research Nuclear University MEPhI, Sechenov University, and Macquarie University (Australia).

Magic bullet: Seek and cure

The concept of a “magic bullet” was originally formulated around 1900 by Paul Ehrlich, the winner of the 1908 Nobel Prize in physiology or medicine. He envisioned drugs that would have a component which recognizes the pathogen in the body and another component that acts on the target. Usually, such drugs target receptors on the surface of the damaged cells. These receptors also allow the agent to recognize the cell. A universal system of this kind can be used for diagnostics, therapy, or both. When therapy and diagnostics are combined, this is known as theranostics.

To make a system incorporating a therapeutic and a diagnostic component, a “molecular glue” is needed for holding the two parts together. This glue can be realized as proteins capable of forming a stable complex by binding to each other. One of the most stable complexes of this kind is the barnase-barstar protein pair. There is a value known as the binding constant that characterizes how strongly the molecules in a complex are coupled. The binding constant of the barnase-barstar complex is 1,000 to 1 million times greater than those of the antigen-antibody complexes, which are the basis of our immune response.

Barnase and barstar can be used to engineer various functional modules for theranostics. For example, barnase can be bound to therapeutic agents — antibodies, drugs, fluorescent molecules, etc. — while barstar can be fused with a targeting agent. This concept was suggested by Sergey Deyev, the head of Molecular Immunology Laboratory of IBCh RAS. The two modules are then combined, forming a bifunctional compound, which has therapeutic and diagnostic properties, and enables targeted drug delivery. By fusing barnase and barstar with various therapeutic and diagnostic molecules, researchers can develop a range of theranostic agents based on the same principle. These molecular structures can be carried on the surface of nano- or microparticles. The particles themselves can have auxiliary properties, including fluorescence or the ability to be destroyed when exposed to radiation, killing off the surrounding harmful cells, such as cancer cells. Dozens of molecular structures of different types can be deposited on a tiny particle, potentially increasing its therapeutic effects.

Molecular assembly kit

The notion of using nano- and microparticles to deliver drugs is being actively researched in many laboratories. The Russian and Australian researchers developed a nanoparticle-based theranostic agent using the barnase-barstar protein complex and studied its properties.

“Most of the currently used methods for chemically coupling biomolecules to nanoparticles have serious flaws,” says lead author Victoria Shipunova, a researcher at MIPT’s Nanobiotechnology Lab and a senior researcher at the Molecular Immunology Lab of the Institute of Bioorganic Chemistry. “The spatial orientation of the biomolecules is poorly controlled, and they encounter problems when binding to their targets. The density of the coupled molecules is fairly low, and the procedure is time-consuming.”

“We developed a method based on the barnase-barstar protein pair that does not alter the spatial structure of the targeting molecules. Two further advantages are its high specificity and rapid coupling: It only takes several minutes for all modules to bind,” she explains.

The researchers used silicon dioxide-coated particles as the carriers for their molecular complex. The primary targets of the biostructures described in the paper are cancer cells, identifiable by the HER2/neu oncomarker on their surface, shown as a red outgrowth in figure 2. HER2/neu is a protein responsible for cell growth and division and present in healthy cells. In cancer cells, however, this protein is in excess — or overexpressed — enabling them to grow and divide uncontrollably.

Figure 2. Theranostic structure operating principle. Image courtesy of the authors of the paper and Lion_on_helium, MIPT press office

The researchers used a molecule from the class of designed ankyrin repeat proteins, or DARPins, as the targeting agent recognizing the HER2/neu protein. Shown as light blue bellflower-shaped structures in figures 1 and 2, DARPins are small and highly stable proteins capable of selectively binding to the target molecule. Besides a DARPin molecule, which recognizes cancer cells, the structure needs to incorporate a molecule capable of binding to the carrier particle’s surface — that is, to silicon dioxide. For this, the researchers used a silicon dioxide-binding peptide obtained by rational design at Macquarie University. As a result, they created the following structure: A nano- or microparticle is coated with silicon dioxide, to which the barnase-DARPin module is attached via the silicon dioxide-binding peptide fused with barstar (figure 1). Importantly, each of the elements involved can be altered or even replaced, modifying the properties of the overall structure. In a way, it is similar to a molecular kit of building blocks, which can be assembled in many ways, producing different therapeutic agents.

Figure 1. Assembly of the structure based on a nanoparticle and the barnase-barstar protein complex. Image courtesy of the authors of the paper and Lion_on_helium, MIPT press office

In effect, the researchers have created a universal assembly method, which allows a number of molecules with therapeutic and diagnostic potential to be easily combined, while preserving their spatial structure and properties.

Tagged with:

About author

Related Articles