Breaking News
December 14, 2018 - GBT Announces U.S. FDA Agrees with its Proposal Relating to Accelerated Approval Pathway for Voxelotor for the Treatment of Sickle Cell Disease and GBT Plans to Submit New Drug Application (NDA)
December 14, 2018 - Partial Thromboplastin Time (PTT) Test: MedlinePlus Lab Test Information
December 14, 2018 - Common tactics for health promotion at work may be detrimental to employees with obesity
December 14, 2018 - Myths about migration and health not supported by available evidence
December 14, 2018 - Recent findings on rare genetic disorder may help develop new treatment options
December 14, 2018 - New drug shows promise in treating sarcomas
December 14, 2018 - Scientists perform lung lavage as new approach for tuberculosis diagnosis in rhinoceros
December 14, 2018 - Recent winners of the Nobel Medicine Prize
December 14, 2018 - KHN’s ‘What the Health?’ Insurance enrollment is lagging — and there are lots of reasons why
December 14, 2018 - Study assesses safety and efficacy of new treatment for pancreatic cancer
December 14, 2018 - Study finds drug targets for Ebola, Dengue, and Zika viruses
December 14, 2018 - Study highlights need for personalized approach to treat ICU acquired delirium
December 14, 2018 - Massage helps relieve pain, improve mobility in patients with knee osteoarthritis
December 14, 2018 - Researchers explore home healthcare nurses’ knowledge attitudes toward infection control
December 14, 2018 - Average outpatient visit in the U.S. costs nearly $500, shows new study
December 14, 2018 - Reference Infliximab, Biosimilar Equivalent for Crohn’s Disease
December 14, 2018 - New contact lens to treat eye injuries
December 14, 2018 - Acne could have a genetic basis find researchers promising new cure
December 14, 2018 - Higher physical activity associated with improved mood
December 14, 2018 - New UGA study points to optimal hypertension treatment for stroke patients
December 14, 2018 - Study highlights factors that can reduce food cravings
December 14, 2018 - Researchers discover Ebola-fighting protein in human cells
December 14, 2018 - Fentanyl surpasses heroin in cause of U.S. drug overdose deaths
December 14, 2018 - When Heart Attack Strikes, Women Often Hesitate to Call for Help
December 14, 2018 - A warning about costume contacts
December 14, 2018 - Study examines link between peripheral artery disease and heart attack
December 14, 2018 - Researchers develop biotechnological tool to produce antifungal proteins in plants
December 14, 2018 - 3D-printed adaptive aids can benefit patients with arthritis
December 14, 2018 - Chronic bullying during adolescence impacts mental health
December 14, 2018 - Integral Molecular and Merus collaborate to develop bispecific antibody therapeutics
December 13, 2018 - Importance of cell cycle and cellular senescence in the placenta discovered
December 13, 2018 - Gold “nanoprisms” open new window into vessels and single cells
December 13, 2018 - Research findings could lead to new targets for cancer-fighting therapeutics
December 13, 2018 - Butantan Institute signs collaboration agreement with MSD to develop dengue vaccines
December 13, 2018 - Study explores how patients want to discuss symptoms with doctors
December 13, 2018 - RUDN medics first to gather scattered data on hepatitis morbidity in Somalia
December 13, 2018 - Age and gender disparities found in use of bed nets to prevent malaria in sub-Saharan Africa
December 13, 2018 - Caffeine therapy benefits developing brains of premature babies
December 13, 2018 - New review focuses on electrospinning techniques used in musculoskeletal tissue engineering
December 13, 2018 - A new division focused on human immune system
December 13, 2018 - Zogenix Announces Positive Phase 3 Trial Results on the Efficacy and Safety of Fintepla (ZX008) in Dravet Syndrome
December 13, 2018 - BCR ABL Genetic Test: MedlinePlus Lab Test Information
December 13, 2018 - Caffeinated beverages during pregnancy linked to lower birth weight babies
December 13, 2018 - Stanford Medicine Health Trends Report examines opportunity to democratize health care
December 13, 2018 - Obsessive-compulsive disorder may protect individuals from obesity
December 13, 2018 - Scientists investigate how a painful event is processed in the brain
December 13, 2018 - Genetic study reveals new insights into underlying causes of moderate-to-severe asthma
December 13, 2018 - Study uncovers new genetic clues to frontotemporal dementia
December 13, 2018 - Vitamin C supplementation for pregnant smokers may reduce harm to infants’ lungs
December 13, 2018 - New study reveals yin-yang personality of dopamine
December 13, 2018 - Research identifies nerve-signaling pathway behind sustained pain after injury
December 13, 2018 - Children with high levels of callous traits show widespread differences in brain structure
December 13, 2018 - Long-term Benefit of Steroid Injections for Knee Osteoarthritis Challenged
December 13, 2018 - Adding new channels to the brain remote control
December 13, 2018 - In the Spotlight: A different side of neuroscience
December 13, 2018 - Medical Marvels: Using immunotherapy for melanoma that spread to the brain
December 13, 2018 - Puzzles do not keep dementia away finds study
December 13, 2018 - New mouse model shows potential for rapid identification of promising muscular dystrophy therapies
December 13, 2018 - Study reveals urban and rural differences in prenatal exposure to essential and toxic elements
December 13, 2018 - New collaborative partnership in quest of novel antibiotics
December 13, 2018 - Single tau molecule holds clues to help diagnose neurodegeneration in its earliest stages
December 13, 2018 - AHA Scientific Statement: Low Risk of Side Effects for Statins
December 13, 2018 - What Is Acute Flaccid Myelitis?
December 13, 2018 - How bereaved people control their thoughts without knowing it
December 13, 2018 - Health care democratization underway, according to 2nd annual Stanford Medicine Health Trends Report | News Center
December 13, 2018 - Going Beyond a Single Color
December 13, 2018 - London-based startup launches ‘thedrug.store’ aiming to clean up CBD industry
December 13, 2018 - Loss of tight junction barrier protein results in gastric cancer development
December 13, 2018 - Novel way to efficiently deliver anti-parasitic medicines
December 13, 2018 - RKI publishes new data on disease prevention and utilization of medical services
December 13, 2018 - High-tech, flexible patches sewn into clothes could help to stay warm
December 13, 2018 - The CCA releases three reports on requests for medical assistance in dying
December 13, 2018 - Restoring Hair Growth on Scarred Skin? Mouse Study Could Show the Way
December 13, 2018 - Probiotic use may reduce antibiotic prescriptions, researchers say
December 13, 2018 - Drug repositioning strategy identifies potential new treatments for epilepsy
December 13, 2018 - Chronic rhinitis associated with hospital readmissions for asthma and COPD patients
December 13, 2018 - Food poisoning discovery could save lives
December 13, 2018 - Cloned antibodies show potential to treat, diagnose life-threatening fungal infections
December 13, 2018 - Exercise may reduce colorectal cancer risk after weight loss
December 13, 2018 - Russian scientists create hardware-information system for brain disorders treatment
Scientists develop novel computational framework to support personalized cancer treatment

Scientists develop novel computational framework to support personalized cancer treatment

image_pdfDownload PDFimage_print

Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug combinations that are most likely to kill them.

The study, published today on Nature Genetics, by Dr. Andrea Califano of Columbia University Irving Medical Center and Dr. Irvin Modlin of Yale University and Wren Laboratories LLC, co-senior author on the study, with collaborators from 17 research centers worldwide, details a proof of concept for a novel analytical platform applicable to any cancer type and validates its predictions on gastroenteropancreatic neuroendocrine tumors (GEP-NETs). The latter represent a rare class of tumors of the digestive system that, when metastatic, are associated with poor survival.

In a comprehensive analysis of samples from 212 patients, the team first identified a new class of drug-targets, called master regulators, which are rarely if ever mutated in cancer patients, and then predicted the drugs that can specifically invert their activity. Surprisingly, even though tumors were analyzed on an individual patient basis, the algorithm predicted the same top drug – Entinostat – for almost half of the metastatic patients. More importantly, when tested in a xenograft transplant of the tumor in a mouse, this drug induced dramatic shrinking of the tumor, while drugs predicted to have partial or no effect were also validated to produce results in line with predictions. These data led to rapid IND (Investigational New Drug) approval by the FDA for a metastatic GEP-NET clinical trial that is open and recruiting patients at Columbia University.

The innovative approach proposed in this manuscript, OncoTreat, is now available as a New York State Department of Health approved test through the Department of Pathology and Cell Biology at CUIMC. The test was co-developed with DarwinHealth, a precision oncology company born out of the Califano Lab work. It is the only such test designed to predict drugs that are optimally matched to individual patient tumors for 10 different aggressive tumor subtypes of ovarian, breast, pancreas, prostate, bladder, and lung cancer, as well as meningioma, sarcoma, glioblastoma, and GEP-NETs.

“This manuscript represents a first proof of concept of what may become a valuable new tool to deliver an effective and systematic precision medicine approach to cancer patients that may complement what we are currently doing with genetic mutations,” says Dr. Califano, the Clyde and Helen Wu Professor of Chemical and Systems Biology and chair of the Department of Systems Biology at CUIMC.

“Using novel systems biology methodologies, which combine the use of supercomputers with large-scale pharmacological assays, we can computationally predict and prioritize drugs and drug combinations that will most effectively kill cancer cells,” explains Dr. Califano. “Such an approach is especially promising for patients with aggressive tumors, who lack actionable mutations, fail to respond to targeted inhibitors or immune-checkpoint inhibitors, or relapse following initial response to a standard of care drug or drug combination. These patients, who unfortunately represent the majority of the aggressive tumor cases, present few, if any, effective therapeutic options. We hope that OncoTreat may offer the oncologist new alternatives when they run out of approved therapies, alternatives that are predicated on an increasingly mechanistic understanding of cancer cell regulation and response to drugs rather than on educated guesswork.”

Dr. Modlin, who had initially proposed the concept of addressing Neuroendocrine tumors using the innovative strategy developed by Dr. Califano, commented that the successful demonstration of the efficacy of a pre-treatment molecular identification strategy was a significant advance on previous practice where treatment agents were used based upon serendipitous selection rather than objective molecular evidence. This work combined with the use of molecular signature tools in blood to monitor real-time efficacy of therapy on disease are likely to change the face of therapeutic management in many diseases.

OncoTreat’s precision medicine approach

The OncoTreat framework centers on identifying and analyzing actionable proteins in cancer patients, independent of their genetic mutations. Called master regulators (MR), these proteins are organized into small regulatory modules – so-called tumor checkpoints – which are responsible for regulating and ensuring the stability of tumor cells. Master regulators and tumor checkpoints can be efficiently and systematically elucidated using the VIPER algorithm developed by the Califano Lab and published in an earlier Nature Genetics manuscript; critically, these analyses allow tracking their activity through metastatic progression, relapse, and development of drug resistance. These computational models were built based on mathematical concepts from information theory and Bayesian statistics and have been extensively validated over the past decade.

MR proteins represent a novel class of tumor vulnerabilities and potential therapeutic targets that are being increasingly adopted by pharmaceutical companies. Extensive research has demonstrated that shutting down the activity of these proteins is catastrophic for tumor cells, making it virtually impossible for them to survive and grow in their environment. In this study, drug compounds are prioritized based on their ability to revert the coordinated activity of 50 such master regulator proteins, as identified by the analysis of tumor samples. Predicted activity reversal was surveyed from an analysis of drug assays both in cell lines and in vivo, in PDX (Patient-Derived Xenografts) mice models.

“Master regulators–a new Achilles’ heel of cancer–represent the engine room of the cancer cell, where the effects of all tumorigenic mutations come together. What OncoTreat is able to do is attack this convergence point with a therapeutic intervention,” says collaborator Gary Schwartz, MD, division chief of hematology and oncology at CUIMC and associate director of the Herbert Irving Comprehensive Cancer Center. “By collapsing this tumor bottleneck, blocking this Achilles’ heel, the cancer can no longer survive. This method is so innovative, requiring a lot of mathematical modeling and understanding. It’s a whole new approach to cancer therapeutics, taking us in an entirely new direction.”

Califano and team validated the OncoTreat approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors, a deliberate choice since GEP-NETs are rare and poorly characterized, making them one of the more challenging tumors to research. Their analysis identified several MR proteins, including key immune function modulators, whose role as critical tumor dependencies was experimentally confirmed. The GEP-NET cells were screened against a library of 107 compounds, and found that the drug, Entinostat, proved to successfully invert the activity of the top 50 MR proteins in 42 percent of GEP-NET patients, providing the rationale for the follow up clinical trial.

“It is certainly our hope that this may provide a short cut to identify viable candidates for phase 2 trials in this and other malignancies,” says coauthor Edward Gelmann, MD, professor of medicine and of pathology and cell biology at CUIMC.

In addition to its potential therapeutic value, OncoTreat provides novel insight into the mechanisms and maintenance of GEP-NETs. In future work, Califano and collaborators intend to expand this approach to cover more than 80% of human malignancies and to develop clinical trials that will test the predictions in patients.

Source:

http://www.cumc.columbia.edu/

Tagged with:

About author

Related Articles