Breaking News
July 18, 2018 - A 3-Pronged Plan to Cut Type 2 Diabetes Risk
July 18, 2018 - New clues to sepsis may speed diagnosis
July 18, 2018 - Stars of Stanford Medicine: Improving cardiovascular health in Africa and beyond
July 18, 2018 - Few tips to help avoid sunburns in summer
July 18, 2018 - Researchers develop 3D map of gene interactions that play key role in heart disease
July 18, 2018 - Conservative management of lung subsolid nodules reduces overtreatment and unnecessary surgery
July 18, 2018 - Report warns of dog illness that can spread to owners
July 18, 2018 - A winning essayist’s tips for keeping track of scientific facts
July 18, 2018 - Researchers seek to understand role of APOE mutation in Alzheimer’s disease
July 18, 2018 - Animal studies reveal brain changes responsible for appetite effects of cannabis
July 18, 2018 - New ZEISS ZEN Intellesis machine allows segmentation of correlative microscopy
July 18, 2018 - Study findings highlight importance of early detection of SMA through newborn screening
July 18, 2018 - Results of Phase III (PIX306) Trial Evaluating Progression-Free Survival of Pixuvri (pixantrone) Combined with Rituximab in Patients with Aggressive B-cell Non-Hodgkin Lymphoma
July 18, 2018 - Diabetes researchers find switch for fatty liver disease
July 18, 2018 - The future of the microbiome: A conversation
July 18, 2018 - States attacking ACA would hurt most if shield on preexisting conditions were axed
July 18, 2018 - Novel delivery system for bacteriophages could offer new way to battle lung infections
July 18, 2018 - PTSD may increase risk of stroke, heart attack in World Trade Center response crews
July 18, 2018 - Finding the right protective eyewear for young athletes
July 18, 2018 - Routine screening, treatment could help stem nationwide opioid epidemic
July 17, 2018 - AI and radar technologies could help diabetics manage their disease
July 17, 2018 - New Stanford algorithm could improve diagnosis of many rare genetic diseases
July 17, 2018 - Burdensome symptoms of eczema can lead to impaired quality of life, shows study
July 17, 2018 - Sartorius Stedim Biotech and Penn State partner to advance teaching, research in biotechnology
July 17, 2018 - Researchers map family trees of cancer cells to understand how AML responds to new drug
July 17, 2018 - Mortality from heart failure remains higher in women than men
July 17, 2018 - Can-Fite BioPharma receives Australian and Chinese patents for new drug to treat erectile dysfunction
July 17, 2018 - AAP: Lawnmowers Pose Serious Injury Risk to Children
July 17, 2018 - Fewer U.S. kids are getting cavities
July 17, 2018 - Differences in brain’s reward circuit may explain social deficits in autism
July 17, 2018 - YCC researchers suggest promising treatment for two rare inherited cancer syndromes
July 17, 2018 - FAU and partners receive NIH research grant to shed light on sleep loss and metabolic disorders
July 17, 2018 - Advanced MRI technique predicts risk of disease progression in MS
July 17, 2018 - Health Tip: Microwave Safely – Drugs.com MedNews
July 17, 2018 - New target for treating heart failure identified
July 17, 2018 - Biodesign fellows simplify heart rhythm monitoring
July 17, 2018 - Study reveals new risk genes for allergic rhinitis
July 17, 2018 - Community college education can increase physician diversity and access to primary care
July 17, 2018 - Inflection Biosciences’ dual mechanism inhibitor shows promise as treatment for CLL
July 17, 2018 - Researchers uncover how cells invite corrupted proteins inside
July 17, 2018 - Large international study finds new risk genes for hay fever
July 17, 2018 - Studies show HORIBA’s new hematology analyzer improves POCT and care of oncology patients
July 17, 2018 - New website aims to make yoga safer for everyone
July 17, 2018 - Long-term survival worse for black survivors of in-hospital cardiac arrest
July 17, 2018 - Stanford data analyst’s childhood inspires his research: A Q&A
July 17, 2018 - Preventability of hospital readmissions changes over time, study reveals
July 17, 2018 - Nursing notes can help predict if ICU patients will survive
July 17, 2018 - Most older adults with probable dementia found to be either undiagnosed or unaware of it
July 17, 2018 - Vallum receives FDA clearance to market PEEK spinal interbody fusion device
July 17, 2018 - Okayama University research could improve prognosis of diabetic kidney disease
July 17, 2018 - Researchers develop machine learning method to predict unknown gene functions of microbes
July 17, 2018 - Homogenous BTK occupancy assay used in tirabrutinib clinical studies
July 17, 2018 - Study identifies new genes linked to heart function and development
July 17, 2018 - NeuroTrauma Sciences and Henry Ford join hands to advance exosome technology
July 17, 2018 - Improved methods to measure enterococci concentrations in recreational water
July 17, 2018 - White adolescent boys experiencing early puberty have high risk for substance use
July 17, 2018 - Celgene and Acceleron Announce Luspatercept Achieved Primary and All Key Secondary Endpoints in Phase III ‘BELIEVE’ Study in Adults with Transfusion-Dependent Beta-Thalassemia
July 17, 2018 - Roots of leukemia reveal possibility of predicting people at risk
July 17, 2018 - Summer med program embraces low-income students’ potential
July 17, 2018 - New research lays foundation to create standards for RNA sequencing
July 17, 2018 - CRISPR/Cas9 gene editing can cause greater genetic damage than previously thought
July 17, 2018 - Democrats rally against threats to the ACA to block Trump’s Supreme Court nominee
July 17, 2018 - Staggering prices slow insurers’ coverage of CAR-T cancer therapy
July 17, 2018 - How proteins involved in neurodegeneration enter cells
July 17, 2018 - New super-resolution ‘nanoscope’ provides insight into progression of Alzheimer’s disease
July 17, 2018 - FDA Advisory Committee Endorses the Effectiveness and Safety of Single-Dose Tafenoquine for the Radical Cure of P. vivax Malaria
July 17, 2018 - Uncovering the evolutionary history of IBD-associated colorectal cancer
July 17, 2018 - Is nutrition research dependable? Stanford’s John Ioannidis weighs in
July 17, 2018 - New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions
July 17, 2018 - Plant-based products fail to have positive impact on blood pressure during clinical studies
July 17, 2018 - Electronic system to speed up facial pain diagnosis may improve quality of life and save money
July 17, 2018 - Study delves into the role played by Protein Kinase C in synaptic plasticity
July 17, 2018 - Women Often Unaware of Their Hospital’s Religious Affiliation
July 17, 2018 - New AASM guideline recommends use of actigraphy for sleep disorders
July 17, 2018 - CRISPR editing reduces repetitive behavior in mice with a form of autism
July 17, 2018 - Scientists use magnets to detect cancer
July 17, 2018 - Microfluidic chip to detect sepsis proves successful in clinical study
July 17, 2018 - Research provides better understanding of mechanisms underlying memory storage
July 17, 2018 - A Multi-Modal Approach for the Early Detection of Breast Cancer
July 17, 2018 - Mailing colorectal cancer tests to patients increases screening rates, report researchers
Polarized cells give the heart its fully developed form

Polarized cells give the heart its fully developed form

image_pdfDownload PDFimage_print
An explanted zebrafish heart loops on its own in a petri dish (left), but without the Frizzled-7a factor necessary for Planar Cell Polarity signaling, it remains tubular (right). Credit: Anne M. Merks, MDC

When it first starts to develop, the heart is a simple tube. Reporting in the journal Nature Communications, researchers at MDC have now described how it forms itself into a its characteristic S-shape and how the ventricles and atria finally develop. Their findings will help scientists to better understand the development of congenital heart diseases.

In Germany, nearly one child in 100 is born with a heart defect. Until recently, little was known about the causes of congenital heart disease. But now important new insights have been provided by research on embryonic heart development by an international team led by Dr. Daniela Panáková, leader of the Electrochemical Signalling in Development and Disease working group at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin.

By conducting experiments with zebrafish, Panáková and her colleagues at MDC and the universities of Potsdam and Zürich have identified the mechanisms by which the heart takes on its fully developed form. Their study was published together with another article on early heart development in the zebrafish in the same issue of Nature Communications. In this paper, a team led by Prof. Christian Mosimann from the Institute of Molecular Life Sciences at the University of Zürich, with the participation of Panáková’s team, reports how the heart first develops into a tube-like form through the continuous flow of heart precursor cells.

Heart cells must find new neighbours

“We then turned to the question of how the linear tube loops round into the characteristic S-shape, which ultimately goes on to form the ventricle and the atrium of the zebrafish heart,” says one of the study’s two lead authors, Anne Margarete Merks from Panáková’s lab. “For this process to occur, the second-generation heart cells need to integrate into the linear heart and identify their correct place.” She explains that this involves relocations of the cells. “They change their neighbours and find new cells to share the cell boundaries with,” says Merks.

As she and her colleagues report, this process is controlled by a signalling pathway—a chain of chemical reactions that cause the cells to react to external signals—known as the PCP signalling pathway. PCP stands for ‘planar cell polarity’. Two components are especially important to this pathway: the molecules Fzd7a and Vangl2. “When we deactivated the genes for these molecules in zebrafish, the heart was unable to develop properly,” says Merks. “Clearly, the cells were unable to locate their future neighbours.”

Polarized cells give the heart its fully developed form
Heart cells of a zebrafish embryo find new neighbors. Over a course of five hours, five heart muscle cells initially sharing a common cell boundary form a new cell junction (arrow/arrowhead). Credit: Marie Swinarski, MDC

Tissue tension is crucial

The PCP signalling pathway influences not just individual cells but also the tissue as a whole. “If the signalling pathway is disrupted in some way, the tissue tension changes,” says Merks. Without the correct tension, the looping process cannot take place and the formation of the heart is impaired. As the researchers discovered in further experiments, the change in tissue tension is due to the fact that the defective PCP signalling pathway alters the cytoskeleton of the heart muscle cells. The cytoskeleton consists of the proteins actin and myosin and enables muscle cells and therefore an entire muscle to contract.

“Normally we observe that the cytoskeleton in the heart cells doesn’t look the same everywhere, but exhibits polarity,” explains Merks. “The surface of the cells differ from their base.” If the PCP signalling pathway is disrupted, this polarity is lost. As a result, the tube-shaped heart cannot take on its new form properly. “The outflow tract, in particular, is unable to develop correctly,” Merks explains. Most congenital heart diseases are due to problems in this part of the organ.

Results transferable to humans

Merks and her colleagues carried out their experiments on zebrafish, because these animals have the important advantage that the heart develops very quickly and starts to beat just 24 hours after fertilisation. “But we’re confident that our findings can be transferred to mammals, including humans,” says Panáková. “The PCP signalling pathway is highly conserved in evolutionary terms and the genes involved in it have already been identified in humans and associated with congenital heart disease.”

Next, Panáková and her team are planning to carry out studies with heart tissue from patients with the congenital heart diseases tetralogy of Fallot and DORV (double outlet right ventricle). They will source the tissue from a biobank run by the Competence Network for Congenital Heart Defects. Through their experiments, the researchers at MDC aim to identify exactly to what extent a disrupted PCP signalling pathway is implicated in the development of these diseases.


Explore further:
Zebrafish heart development reveals key insight into inherited heart defects

More information:
Anne Margarete Merks, et al. (2018): “Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity.” Nature Communications. DOI: 10.1038/10.1038/s41467-018-04566-1

Journal reference:
Nature Communications

Provided by:
Max Delbrück Center for Molecular Medicine

Tagged with:

About author

Related Articles