Breaking News
July 18, 2018 - A 3-Pronged Plan to Cut Type 2 Diabetes Risk
July 18, 2018 - New clues to sepsis may speed diagnosis
July 18, 2018 - Stars of Stanford Medicine: Improving cardiovascular health in Africa and beyond
July 18, 2018 - Few tips to help avoid sunburns in summer
July 18, 2018 - Researchers develop 3D map of gene interactions that play key role in heart disease
July 18, 2018 - Conservative management of lung subsolid nodules reduces overtreatment and unnecessary surgery
July 18, 2018 - Report warns of dog illness that can spread to owners
July 18, 2018 - A winning essayist’s tips for keeping track of scientific facts
July 18, 2018 - Researchers seek to understand role of APOE mutation in Alzheimer’s disease
July 18, 2018 - Animal studies reveal brain changes responsible for appetite effects of cannabis
July 18, 2018 - New ZEISS ZEN Intellesis machine allows segmentation of correlative microscopy
July 18, 2018 - Study findings highlight importance of early detection of SMA through newborn screening
July 18, 2018 - Results of Phase III (PIX306) Trial Evaluating Progression-Free Survival of Pixuvri (pixantrone) Combined with Rituximab in Patients with Aggressive B-cell Non-Hodgkin Lymphoma
July 18, 2018 - Diabetes researchers find switch for fatty liver disease
July 18, 2018 - The future of the microbiome: A conversation
July 18, 2018 - States attacking ACA would hurt most if shield on preexisting conditions were axed
July 18, 2018 - Novel delivery system for bacteriophages could offer new way to battle lung infections
July 18, 2018 - PTSD may increase risk of stroke, heart attack in World Trade Center response crews
July 18, 2018 - Finding the right protective eyewear for young athletes
July 18, 2018 - Routine screening, treatment could help stem nationwide opioid epidemic
July 17, 2018 - AI and radar technologies could help diabetics manage their disease
July 17, 2018 - New Stanford algorithm could improve diagnosis of many rare genetic diseases
July 17, 2018 - Burdensome symptoms of eczema can lead to impaired quality of life, shows study
July 17, 2018 - Sartorius Stedim Biotech and Penn State partner to advance teaching, research in biotechnology
July 17, 2018 - Researchers map family trees of cancer cells to understand how AML responds to new drug
July 17, 2018 - Mortality from heart failure remains higher in women than men
July 17, 2018 - Can-Fite BioPharma receives Australian and Chinese patents for new drug to treat erectile dysfunction
July 17, 2018 - AAP: Lawnmowers Pose Serious Injury Risk to Children
July 17, 2018 - Fewer U.S. kids are getting cavities
July 17, 2018 - Differences in brain’s reward circuit may explain social deficits in autism
July 17, 2018 - YCC researchers suggest promising treatment for two rare inherited cancer syndromes
July 17, 2018 - FAU and partners receive NIH research grant to shed light on sleep loss and metabolic disorders
July 17, 2018 - Advanced MRI technique predicts risk of disease progression in MS
July 17, 2018 - Health Tip: Microwave Safely – Drugs.com MedNews
July 17, 2018 - New target for treating heart failure identified
July 17, 2018 - Biodesign fellows simplify heart rhythm monitoring
July 17, 2018 - Study reveals new risk genes for allergic rhinitis
July 17, 2018 - Community college education can increase physician diversity and access to primary care
July 17, 2018 - Inflection Biosciences’ dual mechanism inhibitor shows promise as treatment for CLL
July 17, 2018 - Researchers uncover how cells invite corrupted proteins inside
July 17, 2018 - Large international study finds new risk genes for hay fever
July 17, 2018 - Studies show HORIBA’s new hematology analyzer improves POCT and care of oncology patients
July 17, 2018 - New website aims to make yoga safer for everyone
July 17, 2018 - Long-term survival worse for black survivors of in-hospital cardiac arrest
July 17, 2018 - Stanford data analyst’s childhood inspires his research: A Q&A
July 17, 2018 - Preventability of hospital readmissions changes over time, study reveals
July 17, 2018 - Nursing notes can help predict if ICU patients will survive
July 17, 2018 - Most older adults with probable dementia found to be either undiagnosed or unaware of it
July 17, 2018 - Vallum receives FDA clearance to market PEEK spinal interbody fusion device
July 17, 2018 - Okayama University research could improve prognosis of diabetic kidney disease
July 17, 2018 - Researchers develop machine learning method to predict unknown gene functions of microbes
July 17, 2018 - Homogenous BTK occupancy assay used in tirabrutinib clinical studies
July 17, 2018 - Study identifies new genes linked to heart function and development
July 17, 2018 - NeuroTrauma Sciences and Henry Ford join hands to advance exosome technology
July 17, 2018 - Improved methods to measure enterococci concentrations in recreational water
July 17, 2018 - White adolescent boys experiencing early puberty have high risk for substance use
July 17, 2018 - Celgene and Acceleron Announce Luspatercept Achieved Primary and All Key Secondary Endpoints in Phase III ‘BELIEVE’ Study in Adults with Transfusion-Dependent Beta-Thalassemia
July 17, 2018 - Roots of leukemia reveal possibility of predicting people at risk
July 17, 2018 - Summer med program embraces low-income students’ potential
July 17, 2018 - New research lays foundation to create standards for RNA sequencing
July 17, 2018 - CRISPR/Cas9 gene editing can cause greater genetic damage than previously thought
July 17, 2018 - Democrats rally against threats to the ACA to block Trump’s Supreme Court nominee
July 17, 2018 - Staggering prices slow insurers’ coverage of CAR-T cancer therapy
July 17, 2018 - How proteins involved in neurodegeneration enter cells
July 17, 2018 - New super-resolution ‘nanoscope’ provides insight into progression of Alzheimer’s disease
July 17, 2018 - FDA Advisory Committee Endorses the Effectiveness and Safety of Single-Dose Tafenoquine for the Radical Cure of P. vivax Malaria
July 17, 2018 - Uncovering the evolutionary history of IBD-associated colorectal cancer
July 17, 2018 - Is nutrition research dependable? Stanford’s John Ioannidis weighs in
July 17, 2018 - New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions
July 17, 2018 - Plant-based products fail to have positive impact on blood pressure during clinical studies
July 17, 2018 - Electronic system to speed up facial pain diagnosis may improve quality of life and save money
July 17, 2018 - Study delves into the role played by Protein Kinase C in synaptic plasticity
July 17, 2018 - Women Often Unaware of Their Hospital’s Religious Affiliation
July 17, 2018 - New AASM guideline recommends use of actigraphy for sleep disorders
July 17, 2018 - CRISPR editing reduces repetitive behavior in mice with a form of autism
July 17, 2018 - Scientists use magnets to detect cancer
July 17, 2018 - Microfluidic chip to detect sepsis proves successful in clinical study
July 17, 2018 - Research provides better understanding of mechanisms underlying memory storage
July 17, 2018 - A Multi-Modal Approach for the Early Detection of Breast Cancer
July 17, 2018 - Mailing colorectal cancer tests to patients increases screening rates, report researchers
Researchers develop low-cost plastic sensors to monitor wide range of health conditions

Researchers develop low-cost plastic sensors to monitor wide range of health conditions

image_pdfDownload PDFimage_print

An international team of researchers have developed a low-cost sensor made from semiconducting plastic that can be used to diagnose or monitor a wide range of health conditions, such as surgical complications or neurodegenerative diseases.

The sensor can measure the amount of critical metabolites, such as lactate or glucose, that are present in sweat, tears, saliva or blood, and, when incorporated into a diagnostic device, could allow health conditions to be monitored quickly, cheaply and accurately. The new device has a far simpler design than existing sensors, and opens up a wide range of new possibilities for health monitoring down to the cellular level. The results are reported in the journal Science Advances.

The device was developed by a team led by the University of Cambridge and King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Semiconducting plastics such as those used in the current work are being developed for use in solar cells and flexible electronics, but have not yet seen widespread use in biological applications.

“In our work, we’ve overcome many of the limitations of conventional electrochemical biosensors that incorporate enzymes as the sensing material,” said lead author Dr Anna-Maria Pappa, a postdoctoral researcher in Cambridge’s Department of Chemical Engineering and Biotechnology. “In conventional biosensors, the communication between the sensor’s electrode and the sensing material is not very efficient, so it’s been necessary to add molecular wires to facilitate and ‘boost’ the signal.”

To build their sensor, Pappa and her colleagues used a newly-synthesised polymer developed at Imperial College that acts as a molecular wire, directly accepting the electrons produced during electrochemical reactions. When the material comes into contact with a liquid such as sweat, tears or blood, it absorbs ions and swells, becoming merged with the liquid. This leads to significantly higher sensitivity compared to traditional sensors made of metal electrodes.

Additionally, when the sensors are incorporated into more complex circuits, such as transistors, the signal can be amplified and respond to tiny fluctuations in metabolite concentration, despite the tiny size of the devices.

Initial tests of the sensors were used to measure levels of lactate, which is useful in fitness applications or to monitor patients following surgery. However, according to the researchers, the sensor can be easily modified to detect other metabolites, such as glucose or cholesterol by incorporating the appropriate enzyme, and the concentration range that the sensor can detect can be adjusted by changing the device’s geometry.

“This is the first time that it’s been possible to use an electron accepting polymer that can be tailored to improve communication with the enzymes, which allows for the direct detection of a metabolite: this hasn’t been straightforward until now,” said Pappa. “It opens up new directions in biosensing, where materials can be designed to interact with a specific metabolite, resulting in far more sensitive and selective sensors.”

Since the sensor does not consist of metals such as gold or platinum, it can be manufactured at a lower cost and can be easily incorporated in flexible and stretchable substrates, enabling their implementation in wearable or implantable sensing applications.

“An implantable device could allow us to monitor the metabolic activity of the brain in real time under stress conditions, such as during or immediately before a seizure and could be used to predict seizures or to assess treatment,” said Pappa.

The researchers now plan to develop the sensor to monitor metabolic activity of human cells in real time outside the body. The Bioelectronic Systems and Technologies group where Pappa is based is focused on developing models that can closely mimic our organs, along with technologies that can accurately assess them in real-time. The developed sensor technology can be used with these models to test the potency or toxicity of drugs.

Tagged with:

About author

Related Articles