Breaking News
July 17, 2018 - Celgene and Acceleron Announce Luspatercept Achieved Primary and All Key Secondary Endpoints in Phase III ‘BELIEVE’ Study in Adults with Transfusion-Dependent Beta-Thalassemia
July 17, 2018 - Roots of leukemia reveal possibility of predicting people at risk
July 17, 2018 - Summer med program embraces low-income students’ potential
July 17, 2018 - New research lays foundation to create standards for RNA sequencing
July 17, 2018 - CRISPR/Cas9 gene editing can cause greater genetic damage than previously thought
July 17, 2018 - Democrats rally against threats to the ACA to block Trump’s Supreme Court nominee
July 17, 2018 - Staggering prices slow insurers’ coverage of CAR-T cancer therapy
July 17, 2018 - How proteins involved in neurodegeneration enter cells
July 17, 2018 - New super-resolution ‘nanoscope’ provides insight into progression of Alzheimer’s disease
July 17, 2018 - FDA Advisory Committee Endorses the Effectiveness and Safety of Single-Dose Tafenoquine for the Radical Cure of P. vivax Malaria
July 17, 2018 - Uncovering the evolutionary history of IBD-associated colorectal cancer
July 17, 2018 - Is nutrition research dependable? Stanford’s John Ioannidis weighs in
July 17, 2018 - New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions
July 17, 2018 - Plant-based products fail to have positive impact on blood pressure during clinical studies
July 17, 2018 - Electronic system to speed up facial pain diagnosis may improve quality of life and save money
July 17, 2018 - Study delves into the role played by Protein Kinase C in synaptic plasticity
July 17, 2018 - Women Often Unaware of Their Hospital’s Religious Affiliation
July 17, 2018 - New AASM guideline recommends use of actigraphy for sleep disorders
July 17, 2018 - CRISPR editing reduces repetitive behavior in mice with a form of autism
July 17, 2018 - Scientists use magnets to detect cancer
July 17, 2018 - Microfluidic chip to detect sepsis proves successful in clinical study
July 17, 2018 - Research provides better understanding of mechanisms underlying memory storage
July 17, 2018 - A Multi-Modal Approach for the Early Detection of Breast Cancer
July 17, 2018 - Mailing colorectal cancer tests to patients increases screening rates, report researchers
July 17, 2018 - Scientists find possible sources of medicinal and antimicrobial drugs
July 17, 2018 - Molecules formed when the body metabolizes omega-3 fatty acids may inhibit cancer
July 17, 2018 - Efficient communication between hospitals improves patient safety and reduces mortality
July 17, 2018 - Study highlights potential of fetal gene therapy to prevent lethal neurodegenerative disease
July 17, 2018 - For Americans, in Science They Trust
July 17, 2018 - Combating HIV/AIDS | NIH MedlinePlus the Magazine
July 17, 2018 - Study shows minorities widely underrepresented in autism diagnoses
July 17, 2018 - Multigene testing replacing BRCA tests for breast cancer risk | News Center
July 17, 2018 - Pre-clinical pilot study shows promising results of ‘concussion pill’
July 17, 2018 - Researchers reduce size of tumors in mice by artificially activating the brain’s reward system
July 17, 2018 - New study documents symptoms of people before they acquire multiple sclerosis
July 17, 2018 - Researchers discover why CRISPR gene editing sometimes fails
July 17, 2018 - New finding may hold key to better understand the complexities of neurological disorders
July 17, 2018 - The Current issue of “The view from here” is concerned with Novel Targets.
July 17, 2018 - Fighting the Flu with a Universal Vaccine
July 17, 2018 - Key social reward circuit in the brain impaired in kids with autism | News Center
July 17, 2018 - Insight into causes, types and treatment of aphasia
July 16, 2018 - Quark Pharmaceuticals, Inc Announces First Patient Dosed in Phase 3 Clinical Trial of QPI-1002 for Prevention of Acute Kidney Injury Following Cardiac Surgery
July 16, 2018 - NSAIDs shown to have causal role in cardiovascular risk of patients with osteoarthritis
July 16, 2018 - PET scan tracer predicts success of cancer ‘vaccine’ | News Center
July 16, 2018 - Parents struggle with what to do when their child has headache, shows study
July 16, 2018 - Outrageous or overblown? HHS announces another round of ACA navigator funding cuts
July 16, 2018 - Weight loss surgery may impact individual’s risk of developing cancer, shows study
July 16, 2018 - Alexion Submits Application for Priority Review and Approval of ALXN1210 as a Treatment for Patients with Paroxysmal Nocturnal Hemoglobinuria (PNH) in the U.S.
July 16, 2018 - Restoring epigenetic balance reinstates memory in flies with Alzheimer’s disease symptoms
July 16, 2018 - Magnetized wire could be used to detect cancer in people | News Center
July 16, 2018 - Non-surgical management found to be feasible option for penetrating kidney trauma
July 16, 2018 - California clinic screens asylum seekers for honesty
July 16, 2018 - FDA Approves Xtandi (enzalutamide) for the Treatment of Men with Non-Metastatic Castration-Resistant Prostate Cancer (CRPC)
July 16, 2018 - Can nanotechnology help treat Alzheimer’s?
July 16, 2018 - Researchers identify protein essential for making stem cells | News Center
July 16, 2018 - Severe childhood infections linked with lower school achievement in adolescence
July 16, 2018 - Radiologist discusses causes, treatments of varicose veins
July 16, 2018 - Researchers develop nanostructured surface to accelerate wound healing after dental implants
July 16, 2018 - New non-invasive procedure to reposition kidney stones could benefit astronauts
July 16, 2018 - Attending Surgeon Influences Genetic Testing in Breast Cancer
July 16, 2018 - Medical doctors with addictions fear professional repercussions if they seek treatment
July 16, 2018 - 5 Questions: John Ioannidis calls for more rigorous nutrition research | News Center
July 16, 2018 - University of Illinois buys 3D-Bioplotter for regenerative biology, tissue engineering research
July 16, 2018 - Charité’s researchers integrate open-source platform into the ‘Human Brain Project’
July 16, 2018 - SUSU scientists develop rehabilitation device for people with lower limbs injuries
July 16, 2018 - Researchers find definite increase in scooter-related injuries
July 16, 2018 - Researchers solve mystery of final blood group system
July 16, 2018 - Researchers develop near-infrared fluorophores-based PDT to cure cancer with less side effects
July 16, 2018 - Traumatic brain injury biomarker could help predict patient prognosis
July 16, 2018 - Researchers to investigate role of hormones in mosquito’s ability to use human blood for egg production
July 16, 2018 - AHA: Doctor Makes Lifesaving House Call in His Own Home
July 16, 2018 - Nearsightedness – Genetics Home Reference
July 16, 2018 - Study shows biomarker panel boosts lung cancer risk assessment for smokers
July 16, 2018 - Researchers find link between bereavement during pregnancy, child’s mental health | News Center
July 16, 2018 - Legalizing same-sex marriage has meaningful effects on health care access for sexual-minority men
July 16, 2018 - New York to allow medical marijuana as substitute to opioids
July 16, 2018 - Reducing tapeworm infection could improve academic performance, reduce poverty | News Center
July 16, 2018 - Researchers describe key role of enzyme in regulating immune response against Chagas disease parasite
July 16, 2018 - Johnson & Johnson Announces Publication in The Lancet Highlighting Robust Immune Response to Janssen’s Mosaic-based Preventive Vaccine Regimen for HIV
July 16, 2018 - Do Racial and Gender Disparities Exist in Newer Glaucoma Treatments?
Researchers discover mechanism that shuts down cell-to-cell communications pathway

Researchers discover mechanism that shuts down cell-to-cell communications pathway

image_pdfDownload PDFimage_print

Cellular functions rely on several communications networks that allow cells to rapidly respond to signals affecting the organism. A new study published in the prestigious journal Molecular Cell has revealed a mechanism that shuts down a major cell-to-cell communications pathway implicated in a number of diseases. INRS professor Nicolas Doucet and his research team contributed to the discovery of this new molecular switch, shedding new light on the role of receptor tyrosine kinases, a well-known protein family whose function is still being explored.

In a complex organism, cells have to coordinate and control widely separated actions to allow the organism to develop normally and carry out its vital functions. For example, a hormone secreted by one organ might act on the cells of another. A host of messages are constantly traveling throughout the body to keep biological processes running smoothly.

Why you cannot live without cell receptors

If we could observe a human cell in enough detail, it would appear to be bristling with all kinds of molecular sensors and receivers, like a forest of antennas on a roof performing a bewildering variety of different tasks. Most are specialized proteins–known as receptor proteins.

Receptor tyrosine kinases (RTKs) are a family of proteins that carry out many tasks required for organism growth and maintenance. They are found in every cell of the human body and broadly act on processes ranging from cell organization to nutrient management. Despite their distinct roles, they conserve a high degree of structural similarity at the molecular level, suggesting that each component of their three-dimensional structure plays an important role in their biological function. However, only recently has technology become sufficiently precise to peer into key molecular interactions of RTKs at the atomic level.

A design honed through evolution

RTK receptors embedded in the cell membrane stick their ‘sensory receivers’ outside the cell and extend their enzymatic machinery inside the cell. Part of their equipment is a kinase, an enzyme that activates other proteins by adding a phosphate group to specific amino acids on their surface. This process is known as phosphorylation.

To activate a cellular signaling pathway, RTKs pair up as soon as a receiver picks up a signal. Linking together involves reciprocal action, with each partner accepting a phosphate group from the other. All partners then line up in such a way that they can interact with a new molecule, thus initiating the required cellular function.

The riddle of the shutdown switch

Université Laval and INRS researchers were trying to figure out how signal pathways were shut down. Some of the mechanisms that inactivate and recycle RTKs are known, but they are too slow to account for what has been observed inside cells. These observations suggest that there is a faster way to shut down these cellular processes.

To better understand what happens at the molecular level between RTK complexes, a family of signaling pathways was analyzed–the one involving the RTK EPHA4 and the adaptor protein NCK, which regulates fundamental processes such as cytoskeletal reorganization, cell migration, and the establishment of neuronal circuitry.

At INRS, Prof. Doucet’s team analyzed the 3D structure of the protein partners at the atomic level. Using nuclear magnetic resonance (NMR) and computer-assisted molecular modeling, they showed that NCK contains a tyrosine amino acid that is extremely important in cellular signaling. This tyrosine is also conserved in these proteins throughout evolution. When NCK binds to EPHA4, the protein partners are perfectly aligned to allow the tyrosine to receive a phosphate group.

Proteins: giants among molecules

One of the main difficulties Prof. Doucet’s research team had to face was the need to clearly demonstrate that NCK and EPHA4 could recognize each other at the molecular level. If not, phosphorylation would be off the table.

“The thing is,” said Prof. Doucet, a molecular engineering specialist, “you cannot assume two proteins will simply recognize each other out of the blue just because you want them to based on your hypothesis. Since what they do is invisible to the naked eye, it takes some pretty advanced molecular technology to convincingly illustrate that this actually happens.”

“This requires credible computer models grounded both in known experimental data and calculation algorithms that analyze the probability of forming these protein complexes,” he continues. “What complicates matters is the fact that proteins are enormous molecules on the atomic scale. There are thousands of atoms to account for in our calculations, each of them simultaneously repelling or attracting the others. All those interactions are governed by physical and mathematical forces that are well known but extremely complex, and it takes a lot of computing power to analyze them all at once.”

But the team delivered the goods, refining the algorithms and measurements. In collaboration with researchers at Université Laval, they successfully observed the cellular mechanism both in vitro and in vivo.

A new key for cell-to-cell communications

The key discovery of this study is the following–as soon as NCK is phosphorylated on this particular tyrosine, it drops whatever its doing and shuts down the cell-to-cell communication circuit. The researchers, many of whom are members of PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, characterized this shutdown effect both in vitro and in vivo.

The newfound switch adds to our understanding of cell-to-cell signaling because it partially accounts for the speed at which the message is controlled from outside the cell. NCK turns signals off without the need to dismantle the RTK complex, which remains active on the cell surface and continues to pick up new signals. Other uncharacterized events control when the complex and NCK resume activity.

The team has uncovered a big piece of the cell signaling puzzle, opening up new possibilities for research on diseases such as cancer and diabetes, where RTK receptors are known to play important roles. The new key for controlling RTKs is certainly exciting, but plenty of research lies ahead before anyone gets to flip the switch.

Source:

http://www.inrs.ca/english/actualites/discovery-new-onoff-switch-affecting-cell-cell-communications

Tagged with:

About author

Related Articles