Breaking News
December 12, 2018 - People who eat red meat have high levels of chemical associated with heart disease, study finds
December 12, 2018 - New method uses water molecules to unlock neurons’ secrets
December 12, 2018 - New computer model predicts prostate cancer progression
December 12, 2018 - More Illnesses From Tainted Romaine Lettuce Reported
December 12, 2018 - Aspirin could reduce HIV infections in women
December 12, 2018 - Sacrificial immune cells alert body to infection
December 12, 2018 - Low-salt diet may be more beneficial for females than males
December 12, 2018 - Major soil organic matter compound battles chronic wasting disease
December 12, 2018 - Findings may open up new ways to treat dwarfism and other ER-stress-related conditions
December 12, 2018 - New computational model provides clearer picture of shape-changing cells’ structure and mechanics
December 12, 2018 - 10 Facts on Patient Safety
December 12, 2018 - Poorest dying nearly 10 years younger than the rich in ‘deeply worrying’ trend for UK
December 12, 2018 - Innovative care model for children with ASD reduces use of behavioral drugs in ED
December 12, 2018 - Spending time in and around Hong Kong’s waters linked to better health and wellbeing
December 12, 2018 - Simple measures to prevent weight gain over Christmas
December 12, 2018 - Research advances offer hope for patient-tailored AML treatment
December 12, 2018 - Researchers discover a ‘blind spot’ in atomic force microscopy
December 12, 2018 - Sprayable gel could help prevent recurrences of cancer after surgery
December 12, 2018 - SLU researchers explore how fetal exposure to inflammation can alter immunity in newborns
December 12, 2018 - How do patients want to discuss symptoms with clinicians?
December 12, 2018 - Zinc chelation may be able to deliver drug to insulin-producing cells
December 12, 2018 - Brigham researchers develop automated, low-cost tool to predict a woman’s ovulation
December 12, 2018 - Some people with Type 2 diabetes may be testing their blood sugar more often than needed
December 12, 2018 - Slow-growing type of glioma may be vulnerable to immunotherapy, suggests study
December 12, 2018 - Study provides new information regarding microRNA function in cellular homeostasis of zebrafish
December 12, 2018 - Study provides new understanding of mysterious ‘hereditary swelling’
December 12, 2018 - Researchers shed new light on how to combat Shiga and ricin toxins
December 12, 2018 - Pregnant Women Commonly Refuse Vaccines
December 12, 2018 - Drug treatment could offer new hope for some patients with brain bleeding
December 12, 2018 - Health care financial burden of animal-related injuries is growing, study says
December 12, 2018 - Macrophage cells could help repair the heart following a heart attack, study finds
December 12, 2018 - Researchers develop new system for efficiently producing human norovirus
December 12, 2018 - New artificial intelligence-based system to differentiate between different types of cancer cells
December 11, 2018 - Brazilian professors propose guidelines for therapeutic use of melatonin
December 11, 2018 - Healthy Lifestyle Lowers Odds of Breast Cancer’s Return
December 11, 2018 - New research identifies two genes linked to serious congenital heart condition
December 11, 2018 - NIH Director talks science, STEM careers with preteens
December 11, 2018 - Disabling a Cellular Antivirus System Could Improve Gene Therapy
December 11, 2018 - New tool swiftly provides accurate measure of patients’ cognitive difficulties
December 11, 2018 - NICE releases new guidelines for diagnosis and management of COPD
December 11, 2018 - Without Obamacare penalty, think it’ll be nice to drop your plan? Better think twice
December 11, 2018 - Researchers capture high-resolution X-ray and NMR image of key immune regulator
December 11, 2018 - Natural flavonoid is effective at treating leishmanisis infections, study shows
December 11, 2018 - Avoidant grievers unconsciously monitor and block mind-wandering contents, study shows
December 11, 2018 - Study identifies how hantaviruses infect lung cells
December 11, 2018 - Improving PTSD care through genetics
December 11, 2018 - Dermatology providers show interest in recommending cannabinoids to patients
December 11, 2018 - Researchers to study effects of electroconvulsive therapy on Alzheimer’s patients with aggression
December 11, 2018 - Four dried fruits have lower glycemic index than starchy foods, study finds
December 11, 2018 - Optimization of drug dose sizes can reduce pharmaceutical wastage
December 11, 2018 - Ultrarestrictive opioid prescribing strategy linked with reduction in number of pills dispensed
December 11, 2018 - PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds
December 11, 2018 - Researchers aim to identify and target high blood pressure indicators
December 11, 2018 - Researchers identify immune cell subset that may drive chronic inflammation
December 11, 2018 - Ezogabine treatment reduces motor neuron excitability in ALS patients, study shows
December 11, 2018 - One implant, two prices. It depends on who’s paying.
December 11, 2018 - Standardizing feeding practices improves growth trends for micro-preemies
December 11, 2018 - COPD Tied to Obesity in Male, Female Never-Smokers
December 11, 2018 - Flossing: Information for Caregivers
December 11, 2018 - Does breastfeeding hormone protect against type 2 diabetes?
December 11, 2018 - Educating future doctors to prescribe physical activity for their patients
December 11, 2018 - Krystal 2000 microplate design improves fluorescence and luminescence measurement
December 11, 2018 - FDA clears mobile medical app to help increase retention in recovery program for opioid use disorder
December 11, 2018 - Overcoming Challenges in High-Speed Centrifugation Experiments
December 11, 2018 - Study shows link between neighborhoods’ socioeconomic status and dietary choices
December 11, 2018 - Lower BMI before obesity surgery predicts greater post-operative weight loss, study finds
December 11, 2018 - Obesity May Be Driving Rise in Uterine Cancers
December 11, 2018 - Antioxidants may prevent cognitive impairment in diabetes
December 11, 2018 - Study discovers link between meditation and how individuals respond to feedback
December 11, 2018 - Researchers identify potential diagnostic tool for Alzheimer’s disease
December 11, 2018 - Oral cancer prognostic signature identified
December 11, 2018 - How Can I Find Out What Caused My Miscarriage?
December 11, 2018 - Novel personalized medicine tool for assessing inherited colorectal cancer syndrome risk developed
December 11, 2018 - Study uncovers 11 new genes associated with epilepsy
December 11, 2018 - Filling research gaps could help develop more disability-inclusive workplaces
December 11, 2018 - Cartilage tissue engineering brings good news for patients with cartilage defects
December 11, 2018 - Novel 3D printing workflow helps predict leaky heart valves
December 11, 2018 - Imagination can help overcome fear and anxiety-related disorders, shows study
December 11, 2018 - Are caries linked to political regime?
December 11, 2018 - Leader in Diabetes Clinical Trials Wins Naomi Berrie Award
Researchers develop novel approach to bridge gap in cell-free systems

Researchers develop novel approach to bridge gap in cell-free systems

image_pdfDownload PDFimage_print

Engineering cellular biology, minus the actual cell, is a growing area of interest in biotechnology and synthetic biology. It’s known as cell-free protein synthesis, or CFPS, and it has potential to provide sustainable ways to make chemicals, medicines and biomaterials.

Unfortunately, a long-standing gap in cell-free systems is the ability to manufacture glycosylated proteins – proteins with a carbohydrate attachment. Glycosylation is crucial for a wide range of important biological processes, and the ability to understand and control this mechanism is vital for disease treatment and prevention.

Matthew DeLisa, the William L. Lewis Professor of Engineering in the Smith School of Chemical and Biomolecular Engineering at Cornell University, and Michael Jewett, associate professor of chemical and biological engineering at Northwestern University, have teamed up on a novel approach that bridges this gap. Their system, the first of its kind, capitalizes on the recent advances in CFPS while adding the crucial glycosylation component in a simplified, “one-pot” reaction. The protein of choice could then be freeze-dried and reactivated for point-of-use synthesis by simply adding water.

DeLisa and Jewett are co-senior authors of “Single-pot Glycoprotein Biosynthesis Using a Cell-Free Transcription-Translation System Enriched with Glycosylation Machinery,” published July 12 in Nature Communications.

Thapakorn Jaroentomeechai, Ph.D. student in the DeLisa Research Group, and Jessica Stark ’12, Ph.D. student in the Jewett group, are co-first authors.

“If you really want to have a useful, portable and deployable vaccine or therapeutic protein technology that’s cell free, you have to figure out the carbohydrate attachment,” DeLisa said. “That’s, in essence, what we’ve done in a very powerful way.”

This work could impact development of decentralized manufacturing strategies. Rapid access to protein-based medicines in remote settings could change lives; new biomanufacturing paradigms suitable for use in low-resource settings might promote better access to costly drugs through local, small-batch production.

DeLisa has done a great deal of research on the molecular mechanisms underlying protein biogenesis in the complex environment of a living cell, such as Escherichia coli (E. coli). While his lab has made some notable breakthroughs, the limitations of this area, he said, are the cell walls themselves.

Jewett’s lab at Northwestern has invested much of its research efforts into cell-free synthetic biology, which leverages nature’s most elegant biomachinery outside the confines of the cell, so a collaboration was a natural extension of both labs’ work.

“In bacterial cell engineering, you’re constantly in a tug of war,” Jewett said. “You’re introducing a mechanism or capability that’s of interest to you as a scientist, but what the cell is trying to do for itself is grow and survive.”

For their new method, the team prepared cell extracts from an optimized laboratory strain of E. coli, CLM24, that were selectively enriched with key glycosylation components. The resulting extracts enabled a simplified reaction scheme, which the team has dubbed cell-free glycoprotein synthesis (CFGpS).

“A major advance of this work is that our cell-free extracts contain all of the molecular machinery for protein synthesis and protein glycosylation,” Stark said. “What that means is you only need to add DNA instructions for your protein of interest to make a glycoprotein in CFGpS. This is a drastic simplification from cell-based methods and allows us to make sophisticated glycoprotein molecules in less than a day.”

And the CFGpS method is highly modular, allowing for the use of distinct and diverse extracts to be mixed for the production of a variety of glycoproteins.

“Because we chose E. coli, which lacks its own glycosylation machinery, to build our CFGpS platform, it gave us a blank slate for bottom-up engineering of any desired glycosylation system,” Jaroentomeechai said. “This gives us the unique ability to control carbohydrate structures and purities of the glycoproteins at levels that are not currently achievable in other cell-based expression systems.”

Even in developed countries like the U.S., the move toward personalized medicine makes this type of on-demand drug production protocol attractive. “You could use a test tube instead of a 50,000-liter bioreactor to make your product, which opens the door to a personalized biomanufacturing paradigm where each patient can receive a unique protein medicine tailored to their physiology,” he said.

Source:

http://news.cornell.edu/stories/2018/07/bioengineers-create-pathway-personalized-medicine

Tagged with:

About author

Related Articles