Breaking News
February 19, 2019 - Anti-cancer immunotherapy could be used to fight HIV
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
February 19, 2019 - Early marker of cardiac damage triggered by cancer treatment identified
February 19, 2019 - Antidepressant drug could save people from deadly sepsis, research suggests
February 19, 2019 - CRISPR technology creates pluripotent stem cells that are ‘invisible’ to the immune system
February 19, 2019 - New study establishes how stress favors breast cancer growth and spread
February 19, 2019 - Midlife Systemic Inflammation Linked to Later Cognitive Decline
February 19, 2019 - Therapy derived from parasitic worms downregulates proinflammatory pathways
February 19, 2019 - Antimicrobial reusable coffee cups are less likely to become contaminated with bacteria, study shows
February 19, 2019 - Harnessing the evolutionary games played by cancer cells to advance therapies
February 19, 2019 - AHA News: Heart Transplant Survivor Gets Wedding Proposal at Finish Line
February 19, 2019 - HIV hidden in patients’ cells can now be accurately measured
February 19, 2019 - Research finds reasons for sudden cardiac death in patients with stable ischemic disease
February 19, 2019 - New protocol could help physicians to rule out bacterial infections in infants
February 19, 2019 - Women experiencing miscarriage should be offered treatment choices
February 19, 2019 - New protocol can help identify febrile infants at low risk for serious bacterial infections
February 19, 2019 - Innovative way to block HIV runs into a roadblock
February 19, 2019 - Springer Nature with BCRF conduct pilot project to make their research datasets more accessible
February 19, 2019 - Study finds neuromelanin-sensitive MRI as potential biomarker for psychosis
February 19, 2019 - Improvements in cardiovascular care for elderly save billions in health care costs
February 19, 2019 - Chilean food regulations are changing food perceptions and purchasing habits, study suggests
February 19, 2019 - Index endoscopy results are crucial for assessment of Barrett’s patients
February 18, 2019 - Breast cancer screening age should be lowered to 35
February 18, 2019 - Brain synchronization depends on the language of communication
February 18, 2019 - Drug Company Payments Over Time May Influence Rx Practices
February 18, 2019 - Despite socioeconomic gains, black-white ‘health gap’ remains
February 18, 2019 - Researchers report progress in the treatment of aggressive brain tumors
February 18, 2019 - Scientists discover trigger that turns strep infections into devastating disease
February 18, 2019 - Scanning children’s teeth may predict future mental health issues
February 18, 2019 - Health Highlights: Feb. 14, 2019
February 18, 2019 - New knowledge could help predict and prevent depression
February 18, 2019 - More primary care physicians leads to longer life spans | News Center
February 18, 2019 - Study examines link between supply of primary care physicians and life expectancy
February 18, 2019 - New study assesses screen time in young children
February 18, 2019 - Patented IU discovery to treat ARDS has been optioned to Theratome Bio
February 18, 2019 - Software found to be four times better at monitoring ovarian cancer
February 18, 2019 - Male Y chromosomes not ‘genetic wastelands’
February 18, 2019 - Hormone therapy during gender transition may increase risk for cardiovascular events
February 18, 2019 - NICE renews accreditation for Advanced
February 18, 2019 - FDA Grants Orphan Drug Designation to Amplyx Pharmaceuticals for APX001 for Treatment of Cryptococcosis
February 18, 2019 - Molecule effective in killing tuberculosis bacteria
February 18, 2019 - Columbia researchers unravel why some glioblastomas respond to immunotherapy
February 18, 2019 - Men who are able to do ten push-ups are less likely to have a stroke
February 18, 2019 - Blood-brain barrier disruption could lead to age-related cognitive decline
February 18, 2019 - Combination of PARP inhibitor and immunotherapy results in tumor regression in SCLC mouse models
February 18, 2019 - Heavy smoking could lead to vision loss, study finds
February 18, 2019 - New diagnostic test for malaria uses spit, not blood
February 18, 2019 - New therapeutic molecules show promise in reversing memory loss related to depression, aging
February 18, 2019 - Darla Shine joins anti-vaccination campaigners
February 18, 2019 - New study outlines sex-specific issues in ischemic heart disease
February 18, 2019 - Drug combinations could become first-line treatment for metastatic kidney cancer
February 18, 2019 - Lifetime adversity, increased neural processing during trauma combine to intensify core PTSD symptoms
February 18, 2019 - HRQoL Scores Decrease With Treatment Line in Multiple Myeloma
February 18, 2019 - Convincing evidence that type 2 diabetes is a cause of erectile dysfunction
February 18, 2019 - Study offers implications of advanced age in evaluation, management of ischemic heart disease
February 18, 2019 - Children from homes with flame-retardant sofa have high SVOC concentration in their blood
February 18, 2019 - Art Institute of Chicago announces results of research on five terracotta sculptures
February 18, 2019 - New PET/CT tracer shows high detection rate for diagnosis of acute venous thromboembolism
February 18, 2019 - Smoking may blight immune response against melanoma and reduce survival
February 18, 2019 - How Inactivity and Junk Food Can Harm Your Brain
February 18, 2019 - Diabetes tops common conditions for frequent geriatric emergency patients
Scientists identify structural and functional differences in human immune-surveillance protein

Scientists identify structural and functional differences in human immune-surveillance protein

image_pdfDownload PDFimage_print

The human body is built for survival. Each one of its cells is closely guarded by a set of immune proteins armed with nearly foolproof radars that detect foreign or damaged DNA. One of the cells’ most critical sentinels is a “first responder” protein known as cGAS, which senses the presence of foreign and cancerous DNA and initiates a signaling cascade that triggers the body’s defenses.

The 2012 discovery of cGAS ignited a firestorm of scientific inquiry, resulting in more than 500 research publications, but the structure and key features of the human form of the protein continued to elude scientists.

Now, scientists at Harvard Medical School and Dana-Farber Cancer Institute have, for the first time, identified the structural and functional differences in human cGAS that set it apart from cGAS in other mammals and underlie its unique function in people.

A report on the team’s work, published July 12 in Cell, outlines the protein’s structural features that explain why and how human cGAS senses certain types of DNA, while ignoring others.

“The structure and mechanism of action of human cGAS have been critical missing pieces in immunology and cancer biology,” said senior investigator Philip Kranzusch, assistant professor of microbiology and immunobiology at Harvard Medical School and Dana-Farber Cancer Institute. “Our findings detailing the molecular makeup and function of human cGAS close this critical gap in our knowledge.”

Importantly, the findings can inform the design of small-molecule drugs tailored to the unique structural features of the human protein-;an advance that promises to boost the precision cGAS-modulating drugs that are currently in development as cancer therapies.

“Several promising experimental immune therapies currently in development are derived from the structure of mouse cGAS, which harbors key structural differences with human cGAS,” Kranzusch said. “Our discovery should help refine these experimental therapies and spark the design of new ones. It will pave the way toward structure-guided design of drugs that modulate the activity of this fundamental protein.”

The team’s findings explain a unique feature of the human protein-;its capacity to be highly selective in detecting certain types of DNA and its propensity to get activated far more sparingly, compared with the cGAS protein in other animals.

Specifically, the research shows that human cGAS harbors mutations that make it exquisitely sensitive to long lengths of DNA but render it “blind” or “insensitive” to short DNA fragments.

“Human cGAS is a highly discriminating protein that has evolved enhanced specificity toward DNA,” said co-first author Aaron Whiteley, a postdoctoral researcher in the Department of Microbiology and Immunobiology at Harvard Medical School. “Our experiments reveal what underlies this capability.”

Location, location, location

In all mammals, cGAS works by detecting DNA that’s in the wrong place. Under normal conditions, DNA is tightly packed and protected in the cell’s nucleus-;the cellular “safe”-;where genetic information is stored. DNA has no business roaming freely around the cell. When DNA fragments do end up outside the nucleus and in the cell’s cytosol, the liquid that encases the cell’s organelles, it’s usually a sign that something ominous is afoot, such as damage coming from within the cell or foreign DNA from viruses or bacteria that has made its way into the cell.

The cGAS protein works by recognizing such misplaced DNA. Normally, it lies dormant in cells. But as soon as it senses the presence of DNA outside the nucleus, cGAS springs into action. It makes another chemical-;a second messenger-;called cGAMP, thus setting in motion a molecular chain reaction that alerts the cell to the abnormal presence of DNA. At the end of this signaling reaction, the cell either gets repaired or, if damaged beyond repair, it self-destructs.

But the health and integrity of the cell are predicated on cGAS’ ability to distinguish harmless DNA from foreign DNA or self-DNA released during cell damage and stress. “It’s a fine balancing act that keeps the immune system in equilibrium. An overactive cGAS can spark autoimmunity, or self-attack, while cGAS that fails to detect foreign DNA can lead to tumor growth and cancer development,” said co-first author Wen Zhou, a postdoctoral researcher at Harvard Medical School and Dana-Farber Cancer Institute.

The current study reveals the evolutionary changes to the protein’s structure that allow human cGAS to ignore some DNA encounters while responding to others.

A foe, an accomplice

For their work, the team turned to an unlikely collaborator-;Vibrio cholerae, the bacterium that causes cholera, one of humankind’s oldest scourges.

Taking advantage of a cholera enzyme that shares similarities with cGAS, the scientists were able to recreate the function of both human and mouse cGAS in the bacterium.

Teaming up with colleagues from the lab of Harvard Medical School bacteriologist John Mekalanos, the scientists designed a chimeric, or hybrid, form of cGAS that included genetic material from both the human and mouse forms of the protein. Then they compared the ability of the hybrid cGAS to recognize DNA against both the intact mouse and intact human versions of the protein.

In a series of experiments, the scientists observed activation patterns between the different types of cGAS, progressively narrowing down the key differences that accounted for differential DNA activation among the three.

The experiments revealed that out of the 116 amino acids that differ in human and mouse cGAS, only two accounted for the altered function of human cGAS. Indeed, human cGAS was capable of recognizing long DNA with great precision but it ignored short DNA fragments. The mouse version of the protein, by contrast, did not differentiate between long and short DNA fragments

“These two tiny amino acids make a world of difference,” Whiteley said. “They allow the human protein to be highly selective and respond only to long DNA, while ignoring short DNA, essentially rendering the human protein more tolerant of DNA presence in the cytosol of the cell.”

Plotting the genetic divergence on an evolutionary timescale, the scientists determined that the human and mouse cGAS genes parted ways sometime between 10 million and 15 million years ago.

The two amino acids responsible for sensing long DNA and tolerating short DNA are found solely in humans and nonhuman primates, such as gorillas, chimps and bonobos. The scientists hypothesize that the ability to ignore short DNA but recognize long DNA must have conferred some evolutionary benefits.”It could be a way to guard against an overactive immune system and chronic inflammation,” Kranzusch said. “Or it could be that the risk of certain human diseases is lowered by not recognizing short DNA.”

In a final set of experiments, the team determined the atomic structure of the human cGAS in its active form as it binds to DNA. To do so, they used a visualization technique known as X-ray crystallography, which reveals the molecular architecture of protein crystals based on a pattern of scattered X-ray beams.

Profiling the structure of cGAS “in action” revealed the precise molecular variations that allowed it to selectively bind to long DNA, while ignoring short DNA.

“Understanding what makes the structure and function of human cGAS different from those in other species was the missing piece,” Kranzusch said. “Now that we have it, we can really start designing drugs that work in humans, rather than mice.”

Source:

https://hms.harvard.edu/news/guardian-cell

Tagged with:

About author

Related Articles