Breaking News
December 16, 2018 - Cannabis youth prevention strategy should target mental wellbeing
December 15, 2018 - Recent developments and challenges in hMAT inhibitors
December 15, 2018 - Sewage bacteria found lurking in Hudson River sediments
December 15, 2018 - CDC selects UMass Amherst biostatistician model that helps predict influenza outbreaks
December 15, 2018 - Researchers reveal brain mechanism that drives itch-evoked scratching behavior
December 15, 2018 - New computer model helps predict course of the disease in prostate cancer patients
December 15, 2018 - Obesity to Blame for Almost 1 in 25 Cancers Worldwide
December 15, 2018 - How the brain tells you to scratch that itch
December 15, 2018 - New findings could help develop new immunotherapies against cancer
December 15, 2018 - World’s largest AI-powered medical research network launched by OWKIN
December 15, 2018 - Young people suffering chronic pain battle isolation and stigma as they struggle to forge their identities
December 15, 2018 - Lifespan extension at low temperatures depends on individual’s genes, study shows
December 15, 2018 - New ingestible capsule can be controlled using Bluetooth wireless technology
December 15, 2018 - Researchers uncover microRNAs involved in the control of social behavior
December 15, 2018 - Research offers hope for patients with serious bone marrow cancer
December 15, 2018 - Link between poverty and obesity is only about 30 years old, study shows
December 15, 2018 - Mass spectrometry throws light on old case of intentional heavy metal poisoning
December 15, 2018 - BeyondSpring Announces Phase 3 Study 105 of its Lead Asset Plinabulin for Chemotherapy-Induced Neutropenia Meets Primary Endpoint at Interim Analysis
December 15, 2018 - Study finds that in treating obesity, one size does not fit all
December 15, 2018 - Tenacity and flexibility help maintain psychological well-being, mobility in older people
December 15, 2018 - Study reveals role of brain mechanism in memory recall
December 15, 2018 - High levels of oxygen encourage the brain to remain in deep, restorative sleep
December 15, 2018 - Experimental HIV vaccine strategy works in non-human primates, research shows
December 15, 2018 - Genetically modified pigs could limit replication of classical swine fever virus, study shows
December 15, 2018 - FDA Approves Herzuma (trastuzumab-pkrb), a Biosimilar to Herceptin
December 15, 2018 - Cost and weight-loss potential matter most to bariatric surgery patients
December 15, 2018 - Cancer Research UK and AstraZeneca open new Functional Genomics Centre
December 15, 2018 - New research lays out potential path for treatment of Huntington’s disease
December 15, 2018 - Prestigious R&D 100 Award presented to Leica Microsystems
December 15, 2018 - Study shows septin proteins detect and kill gut pathogen, Shigella
December 15, 2018 - Study sheds new light on disease-spreading mosquitoes
December 15, 2018 - 2017 Saw Slowing in National Health Care Spending
December 15, 2018 - Monitoring movement reflects efficacy of mandibular splint
December 15, 2018 - Study supports BMI as useful tool for assessing obesity and health
December 15, 2018 - Self-guided, internet-based therapy platforms effectively reduce depression
December 15, 2018 - Organically farmed food has bigger climate impact than conventional food production
December 15, 2018 - Faster, cheaper test has potential to enhance prostate cancer evaluation
December 15, 2018 - Researchers study abnormal blood glucose levels of patients after hospital discharge
December 15, 2018 - Swedish scientists explore direct association of dementia and ischemic stroke deaths
December 15, 2018 - Study finds 117% increase in number of dementia sufferers in 26 years
December 15, 2018 - Eczema Can Drive People to Thoughts of Suicide: Study
December 15, 2018 - Link between neonatal vitamin D deficiency and schizophrenia confirmed
December 15, 2018 - Nurse denied life insurance because she carries naloxone
December 15, 2018 - Ritalin drug affects organization of pathways that build brain networks used in attention, learning
December 15, 2018 - Research pinpoints two proteins involved in creation of stem cells
December 15, 2018 - Gut bacteria may modify effectiveness of anti-diabetes drugs
December 15, 2018 - A new type of ‘painless’ adhesive for biomedical applications
December 15, 2018 - Early physical therapy associated with reduction in opioid use
December 15, 2018 - Breast cancer protection from pregnancy begins many decades later, study finds
December 15, 2018 - How often pregnant women follow food avoidance strategy to prevent allergy in offspring?
December 15, 2018 - Using machine learning to predict risk of developing life-threatening infections
December 15, 2018 - How imaginary friends could boost children’s development
December 15, 2018 - Folate deficiency creates more damaging chromosomal abnormalities than previously known
December 15, 2018 - Study provides new insights into molecular mechanisms underlying role of amyloid in Alzheimer’s disease
December 15, 2018 - For the asking, a check is in the mail to help pay for costly drugs
December 15, 2018 - UA scientists uncover biological processes leading to rare brain disorder in babies
December 15, 2018 - The largest database on industrial poisons
December 15, 2018 - ESMO Immuno-Oncology Congress showcases novel technologies set to benefit many cancer patients
December 15, 2018 - Ovid Therapeutics Announces Plans to Move into a Phase 3 Trial in Pediatric Patients Based on End-of-Phase 2 Meeting for OV101 in Angelman Syndrome
December 15, 2018 - Left ventricular noncompaction – Genetics Home Reference
December 15, 2018 - Children’s sleep not significantly affected by screen time, new study finds
December 15, 2018 - When should dementia patients stop driving? A new guidance for clinicians
December 15, 2018 - Researchers use INTEGRA’s VIAFLO 96/384 to streamline the experimental workflow
December 15, 2018 - Researchers discover protein involved in nematode stress response
December 15, 2018 - Cancer patients have greater risk of developing shingles, study shows
December 14, 2018 - UAlberta scientists identify biomarkers for detecting Alzheimer’s disease in saliva samples
December 14, 2018 - Study uncovers link between tube travel and spread of flu-like illnesses
December 14, 2018 - Caffeine plus another compound in coffee may fight Parkinson’s disease
December 14, 2018 - GW researchers review studies on treatments for prurigo nodularis
December 14, 2018 - Lack of peds preventive care ups unplanned hospital admissions
December 14, 2018 - Miscarriage: When Language Deepens Pain
December 14, 2018 - New method helps better understand pathological development of ALS
December 14, 2018 - Intellectually active lifestyle confers protection against neurodegeneration in Huntington’s patients
December 14, 2018 - Mammalian collagen nanofibrils become stronger and tougher with exercise
December 14, 2018 - Considerable Morbidity, Mortality Due to Animal Encounters
December 14, 2018 - Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson’s disease
December 14, 2018 - How early physical therapy can lessen the long-term need for opioids
December 14, 2018 - Depression, suicide rates highest in Mountain West states
December 14, 2018 - New model could cure the potential to underestimate how quickly diseases spread
December 14, 2018 - Exercise-induced hormone activates cells critical for bone remodeling in mice
Study uncovers new protein complex that shields broken DNA ends

Study uncovers new protein complex that shields broken DNA ends

image_pdfDownload PDFimage_print

Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Their study, published in Nature today (Wednesday), uncovered a brand new protein complex in cells that shields broken DNA ends and controls the way in which it is repaired.

The new complex pushes cancer cells to use a particular type of DNA repair system that is vulnerable to targeting by exciting new drugs called PARP inhibitors or platinum-based chemotherapies.

The landmark study was a result of collaboration between the University of Toronto, The Institute of Cancer Research, London, The Netherlands Cancer Institute and the University of Bern.

The discovery could lead to tests to direct and monitor treatment for patients with mutations in BRCA1, BRCA2 or other DNA repair genes, treated with platinum-based chemotherapies or exciting new drugs called PARP inhibitors.

The newly named ‘Shieldin’ complex was also found to be important for generating the right type of antibodies during an immune response, and mutations could lead to immune-related disorders.

The study was funded by a variety of organisations worldwide, including Canadian Cancer Society and the Canadian Institutes of Health Research, and Cancer Research UK and Breast Cancer Now in the UK.

PARP inhibitors are hugely promising treatments because they take advantage of a major vulnerability of some cancers – a weakness in the ability of cancer cells to repair their DNA. Traditional platinum-based chemotherapies are also being used in a more targeted way to take advantage of DNA repair weaknesses.

When intact, the newly discovered Shieldin complex was found to contribute to this vulnerability by attaching to the broken DNA, forcing cancer cells to attempt to repair their DNA in a way that makes them susceptible to PARP inhibitors and platinum chemotherapies.

But when mutations are introduced in the components of the complex, the researchers found that cancer cells grown in the lab and in mice used an alternative way to repair DNA and quickly became resistant to PARP inhibitors.

The PARP inhibitor drug olaparib is approved in the US and Europe for treating ovarian and breast cancers with BRCA mutations, and looks promising against some prostate cancers – so the results could have a wide impact on cancer treatment if mutations in the ‘Shieldin’ complex are shown to lead to treatment failure in the clinic.

To uncover the complex, the international team of researchers analysed breast cancer cells and mice that had mutations in the gene BRCA1.

They used cutting-edge Crispr/Cas9 genetic manipulation technology to search for gene mutations that caused cells to become resistant to the PARP inhibitor drugs olaparib and talaoparib, as well as the platinum chemotherapy cisplatin.

Through painstaking experiments, the researchers were able to pick out key gene mutations that led to drug resistance, which proteins these had an effect on, and work out what these proteins did in cells.

They found the new complex is composed of newly identified proteins, now named SHLD1, SHLD2, and SHLD3.

In healthy cells, the complex was found to attach to the ends of broken DNA so that the ‘blunt ends’ of the DNA have to be stuck back together directly – a quicker, messier way of repairing DNA that can sometimes be necessary for making antibodies during immune responses.

When the researchers introduced mutations into the Shieldin complex – which stop it from forming and protecting broken DNA ends – cells are free to repair DNA via a different method, and this means PARP inhibitors are no longer effective.

Study lead author, Professor Daniel Durocher from the University of Toronto professor, said:

“PARP inhibitors hold great promise for breast and ovarian cancer treatment, but we must understand why they sometimes don’t work, or stop working altogether. Knowing more about how cancer evades PARP inhibition by studying basic DNA repair mechanisms brings us a big step closer to this objective, which will improve how we treat some of the most intractable cancers.”

Professor Chris Lord, Professor of Cancer Genomics at The Institute of Cancer Research, London, said:

“Our DNA is constantly damaged and repaired. Our ability to repair that DNA is crucial to keep cells alive and to prevent diseases such as cancer.”

“Our study reveals for the first time a complex that is crucial for DNA repair. Mutated versions of the complex could allow cancer cells to become resistant to exciting new PARP inhibitor drugs as well as some types of chemotherapy.

“We next need to show that these mutations actually occur in patients and are clinically important. If that’s the case, we should be able to test for these mutations as a way of monitoring treatment and spotting early signs of resistance.”

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

“This exciting study has revealed a vital new player in DNA repair – a weakness in cancer that is a key target of exciting precision cancer drugs. It takes us a big leap forward in our understanding of how cells repair DNA – a fundamental process of life, and one which could have important implications for cancer treatment.”

Dr Justine Alford, from Cancer Research UK, said:

“PARP inhibitors are an important treatment for some people with cancers caused by faulty BRCA genes, but unfortunately they don’t work for everyone. This study is helping scientists to further their understanding of why this might be, and could one day have implications for the clinic. If proven in people, not only could this information help pinpoint people who might not benefit from these drugs, sparing them from treatment that likely won’t work, but it could also identify people who may benefit from a different treatment. Ultimately, we need more research like this to help make treatment even more precise.”

Source:

https://www.utoronto.ca/news/u-t-scientists-uncover-dna-shield-crucial-roles-normal-cell-division-immune-system-and-cancer

Tagged with:

About author

Related Articles