Breaking News
December 11, 2018 - Ultrarestrictive opioid prescribing strategy linked with reduction in number of pills dispensed
December 11, 2018 - PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds
December 11, 2018 - Researchers aim to identify and target high blood pressure indicators
December 11, 2018 - Ezogabine treatment reduces motor neuron excitability in ALS patients, study shows
December 11, 2018 - One implant, two prices. It depends on who’s paying.
December 11, 2018 - Standardizing feeding practices improves growth trends for micro-preemies
December 11, 2018 - COPD Tied to Obesity in Male, Female Never-Smokers
December 11, 2018 - Flossing: Information for Caregivers
December 11, 2018 - Does breastfeeding hormone protect against type 2 diabetes?
December 11, 2018 - Krystal 2000 microplate design improves fluorescence and luminescence measurement
December 11, 2018 - FDA clears mobile medical app to help increase retention in recovery program for opioid use disorder
December 11, 2018 - Overcoming Challenges in High-Speed Centrifugation Experiments
December 11, 2018 - Study shows link between neighborhoods’ socioeconomic status and dietary choices
December 11, 2018 - Lower BMI before obesity surgery predicts greater post-operative weight loss, study finds
December 11, 2018 - Obesity May Be Driving Rise in Uterine Cancers
December 11, 2018 - Antioxidants may prevent cognitive impairment in diabetes
December 11, 2018 - Study discovers link between meditation and how individuals respond to feedback
December 11, 2018 - Researchers identify potential diagnostic tool for Alzheimer’s disease
December 11, 2018 - Oral cancer prognostic signature identified
December 11, 2018 - How Can I Find Out What Caused My Miscarriage?
December 11, 2018 - Novel personalized medicine tool for assessing inherited colorectal cancer syndrome risk developed
December 11, 2018 - Study uncovers 11 new genes associated with epilepsy
December 11, 2018 - Filling research gaps could help develop more disability-inclusive workplaces
December 11, 2018 - Cartilage tissue engineering brings good news for patients with cartilage defects
December 11, 2018 - Novel 3D printing workflow helps predict leaky heart valves
December 11, 2018 - Imagination can help overcome fear and anxiety-related disorders, shows study
December 11, 2018 - Are caries linked to political regime?
December 11, 2018 - Leader in Diabetes Clinical Trials Wins Naomi Berrie Award
December 11, 2018 - Scientists discover cellular mechanism that triggers pneumonia in humans
December 11, 2018 - Increasing mental health problems related to drug use in over 55’s
December 11, 2018 - High-intensity interval exercise could help combat cognitive dysfunction in obese people
December 11, 2018 - Annual flu shot can save lives of heart failure patients
December 11, 2018 - Researchers compare health outcomes for VA and non-VA hospitals
December 11, 2018 - Recommendations Developed for Psoriatic Arthritis Treatment
December 11, 2018 - Genetic analysis links obesity with diabetes, coronary artery disease
December 11, 2018 - Study shows that having genetic information can affect how the body responds
December 11, 2018 - UNAIDS Report: 9 Million Are Likely HIV Positive And Don't Know It
December 11, 2018 - Lund University researchers succeed in obtaining dendritic cells by direct reprogramming
December 11, 2018 - Breast tumors recruit bone marrow cells to boost their growth, study reveals
December 11, 2018 - Updated breast cancer screening guideline highlights importance of shared decision-making
December 11, 2018 - EHR-related stress associated with physician burnout
December 11, 2018 - AHA: 12-Year-Old Heart Defect Survivor Inspires NFL Player’s Foundation
December 11, 2018 - Breast cancer patients who take heart drug with trastuzumab have less heart damage
December 11, 2018 - Providing aid to those humans – and animals – affected by the California fires
December 11, 2018 - Even without proof, CBD is finding a niche as a cure-all
December 11, 2018 - Drawing leads to better memory than writing
December 11, 2018 - Researchers report novel findings on plant hormone
December 10, 2018 - A Tale of Two Labels
December 10, 2018 - Triple combination cancer immunotherapy improves outcomes in preclinical melanoma model
December 10, 2018 - A 14-year-old explains what it’s like to get a new heart
December 10, 2018 - Team Players Honored with 2018 Baton Awards
December 10, 2018 - Global report highlights how the changing world is affecting children’s physical activity levels
December 10, 2018 - Genes play a role in physical activity and sleep
December 10, 2018 - DDT in Alaskan fish shown to increase risk of cancer
December 10, 2018 - Laws to curb use of cell phones have greatly reduced fatalities for motorcyclists
December 10, 2018 - Argenx Provides Detailed Data from Phase 2 Clinical Trial of Efgartigimod in Immune Thrombocytopenia and Phase 1/2 Clinical Trial of Cusatuzumab in Acute Myeloid Leukemia
December 10, 2018 - University of Maryland doctors treat first breast cancer patients with GammaPod radiotherapy
December 10, 2018 - The heartbeat seat: Demoing new well-being technologies in a car
December 10, 2018 - Leading Cancer Researcher to Direct Herbert Irving Comprehensive Cancer Center
December 10, 2018 - Researchers explore how glial cells develop in the brain from neural precursor cells
December 10, 2018 - Study compares pain-related diagnoses in First Nations and non-First Nations children, youth
December 10, 2018 - Experts address sleep disorders following traumatic brain injury
December 10, 2018 - Scientists find answers to how cancer spreads
December 10, 2018 - Study explores why older people read more slowly
December 10, 2018 - Smart life-collar could save lives of young children
December 10, 2018 - Asbestos found in most NHS hospitals finds BBC inquiry
December 10, 2018 - Researchers use new technique to probe hydrogen bonds
December 10, 2018 - Music improves social communication in autistic children
December 10, 2018 - Some Brain Tumors May Respond to Immunotherapy, New Study Suggests
December 10, 2018 - Banning junk food ads to combat childhood obesity
December 10, 2018 - Skin Autofluorescence Predicts T2DM, Heart Disease, Mortality
December 10, 2018 - Largest autism sequencing study to date yields 102 genes associated with ASD
December 10, 2018 - Statins associated with low risk of side effects
December 10, 2018 - Episodic memory tests help in predicting brain atrophy and Alzheimer’s disease
December 10, 2018 - Study explores how schools address adolescent self-harming practices
December 10, 2018 - Pregnancy in adolescence linked to increased risks of complications in young mothers
December 10, 2018 - Risk Analysis publishes special issue on communicating about Zika virus
December 10, 2018 - Botox May Help Prevent Post-Op A-Fib
December 10, 2018 - African-American mothers rate boys higher for ADHD
December 10, 2018 - Graphic warning labels cancel out cigarettes’ appeal to young people
Drug in clinical trials for Parkinson’s disease offers hope for treating heart failure

Drug in clinical trials for Parkinson’s disease offers hope for treating heart failure

image_pdfDownload PDFimage_print

A drug currently in clinical trials for treating symptoms of Parkinson’s disease may someday have value for treating heart failure, according to results of early animal studies by Johns Hopkins Medicine researchers.

The drug, a member of a class of compounds known as phosphodiesterase (PDE) type I inhibitors, shows promising effects on dog and rabbit hearts, as well as on isolated rabbit heart cells, most notably an increase in the strength of the heart muscle’s contractions, the researchers say.

Human heart failure is a chronic condition often marked by weakening of the heart muscle and its subsequent failure to pump enough blood. Currently, dozens of drugs are available to treat or manage heart failure symptoms, but drugs that improve the strength of the heart muscle’s contractions, such as dobutamine, carry the risk of dangerous complications such as developing an irregular heartbeat.

However, in their study, described in a report published in the journal Circulation on July 20, the Johns Hopkins researchers demonstrate that the new compound works differently than current drugs, suggesting its use may be a safer way to increase heart contraction strength.

Heart failure affects about 5.7 million U.S. adults, according to the Centers for Disease Control and Prevention, and contributes to an estimated one in nine deaths. Standard treatment includes diuretics that increase urine production to keep the heart from becoming enlarged; angiotensin-converting enzyme (ACE) inhibitors that lower blood pressure and reduce the workload on the heart; and beta blockers that protect against heart damage from high levels of the stress hormone adrenaline that are common with heart failure, and that help reduce the heart’s workload. There is no cure.

“Our results are intriguing because so far it’s been largely uncharted territory to come up with a way of increasing contractility that doesn’t ultimately hurt patients,” says David Kass, M.D., the Abraham and Virginia Weiss Professor of Cardiology at the Johns Hopkins University School of Medicine and principal investigator of the study.

The drug explored in the new study, ITI-214, inhibits the enzyme PDE1, which is part of the larger phosphodiesterase (PDE) family of over 100 such proteins. All PDEs work by breaking down one or both of two molecules: cAMP and cGMP, each of which serve as molecular messengers inside cells. Each PDE has very specific features, including the type of cell they exist in and their location inside that cell, allowing them to adjust cAMP and/or cGMP very precisely.

PDE inhibitors work by stopping the breakdown of cAMP and cGMP, causing these molecules to build up so they can influence proteins to alter the cell. In heart disease, PDE activity can limit the beneficial effects of cAMP or cGMP, so inhibitors have the potential to act as a therapy.

In mice, Kass notes, PDE1 inhibitors had been reported to shrink abnormally thick heart muscle caused by high blood pressure and dilate blood vessels. However, in mice the heart mostly has a different form of the PDE1 enzyme than found in humans, so PDE1 inhibitors likely affect mice differently than humans.

Dogs and rabbits, which this research focused on, have a PDE1 composition more similar to humans, Kass says.

For their experiments, the researchers used six dogs surgically outfitted with sensors and heart pacemakers, and tested ITI-214’s effects on them before and after inducing heart failure by running the pacemaker rapidly for approximately three weeks. The drug was tested at different doses, both orally and intravenously. The dogs were given at least a day between tests.

When given at an oral dose of 10 milligrams for every kilograms via a peanut butter-covered pill, ITI-214 increased the amount of blood pumped out by the heart each minute by 50 percent in the healthy hearts and by 32 percent in the failing hearts. It did this, Kass says, by increasing the strength of the heart’s contractions by almost 30 percent and by dilating the blood vessels. Intravenous administration of the drug resulted in similar, but more rapid, effects.

“We were pretty agnostic about what we would find and didn’t necessarily expect anything that novel,” says Kass. “To my knowledge, no study had reported increased heart contraction strength from a PDE1 inhibition before. But then, all of the prior studies where this might have been tested had used mice, and we knew that a different PDE1 form was found in larger mammals and humans. So, we just had to try it, and the results were very interesting.”

In healthy dogs, Kass cautions, the drug also raised their heart rate by approximately 40 beats per minute on average, which can be dangerous for heart failure patients. However, the dogs with failing hearts had no significant difference in heart rate before and after the drug was given.

Even with these promising results, there was a major concern. Other heart failure drugs designed to strengthen heart contractions have potentially fatal complications, such as developing wildly irregular heartbeats. Inhibitors of a different PDE, PDE3, including amrinone and milrinone, are especially infamous for this.

“This was the boogeyman in the room,” says Kass. “The new drug produced many of the same heart and artery changes that PDE3 inhibitors do, so we naturally worried whether it worked in a similar way and might also have complications. So we tested them side by side.”

When they compared the effects of ITI-214 to a PDE3 inhibitor in isolated muscle cells from 13 rabbit hearts, the way the two drugs acted looked different.

One of the major ways that PDE3 inhibitors are thought to work is by increasing the amount of calcium inside the muscle cell, which triggers key proteins to exert more force on the cell, and causes the cell to contract more strongly.

As expected, when the researchers applied a PDE3 inhibitor to the heart cells, calcium levels rose and the cells contracted more strongly than without the inhibitor.

By itself, inhibiting PDE1 had no effect on the muscle cells, but the researchers thought this might be because PDE1 activity is too low in a resting cell. So they used a drug to first slightly increase cAMP levels, and this increased PDE1 activity enough for them to observe ITI-214’s effects.

With the added drug, ITI-214 caused the cell to contract more strongly. However, the cell’s calcium levels didn’t rise, strongly indicating that ITI-214 increases muscle contractions through a different mechanism than the PDE3 inhibitors.

“Our results show that inhibiting PDE1 produces different changes than blocking PDE3, and so we hope that we can bypass the calcium-mediated and potentially deadly arrhythmias that have plagued PDE3 inhibitors,” says Grace Kim, a lead co-author and a postdoctoral fellow in Kass’ lab. “We are anticipating similar positive benefits on heart function but with much less toxicity.”

Kass says ITI-214 also appears to function differently than dobutamine, which strengthens heart contractions in people with heart failure but also can cause fatal irregular heart rhythms. Dobutamine works by stimulating the beta adrenergic system, the same system that is activated by adrenaline. Dobutamine acts on the same pool of messenger molecules that increase the cAMP that PDE3 degrades, so its heart effects are similar to those of a PDE3 inhibitor.

When the researchers blocked the beta adrenergic receptors in 11 healthy, anesthetized rabbits and then applied ITI-214, all of the effects–except for its impact on heart rate–remained. If ITI-214 were acting through the beta adrenergic system, blocking the receptors should have blocked its actions.

Instead, it appears the drug might be working on cAMP generated by a different signaling system in the heart that uses adenosine. When the researchers used a drug to block receptors in the adenosine system in a separate set of seven anesthetized rabbits, all of the effects of the drug, including increased heart rate, were eliminated.

Other studies have demonstrated that the adenosine pathway can have protective effects on the heart, Kass says. In the same issue of Circulation, other investigators at the University of Rochester also found that PDE1 controls the adenosine pathway, and that inhibiting PDE1 could protect the heart from toxicity of some cancer drugs.

ITI-214 is now in early clinical trials and is being tested in heart failure patients at Johns Hopkins Medicine and Duke University. It has already passed phase 1 safety trials in healthy individuals.

Source:

https://www.hopkinsmedicine.org/news/media/releases/drug_now_in_clinical_trials_for_parkinsons_strengthens_heart_contractions_in_animals

Tagged with:

About author

Related Articles