Breaking News
December 12, 2018 - People who eat red meat have high levels of chemical associated with heart disease, study finds
December 12, 2018 - New method uses water molecules to unlock neurons’ secrets
December 12, 2018 - New computer model predicts prostate cancer progression
December 12, 2018 - More Illnesses From Tainted Romaine Lettuce Reported
December 12, 2018 - Aspirin could reduce HIV infections in women
December 12, 2018 - Sacrificial immune cells alert body to infection
December 12, 2018 - Low-salt diet may be more beneficial for females than males
December 12, 2018 - Major soil organic matter compound battles chronic wasting disease
December 12, 2018 - Findings may open up new ways to treat dwarfism and other ER-stress-related conditions
December 12, 2018 - New computational model provides clearer picture of shape-changing cells’ structure and mechanics
December 12, 2018 - 10 Facts on Patient Safety
December 12, 2018 - Poorest dying nearly 10 years younger than the rich in ‘deeply worrying’ trend for UK
December 12, 2018 - Innovative care model for children with ASD reduces use of behavioral drugs in ED
December 12, 2018 - Spending time in and around Hong Kong’s waters linked to better health and wellbeing
December 12, 2018 - Simple measures to prevent weight gain over Christmas
December 12, 2018 - Research advances offer hope for patient-tailored AML treatment
December 12, 2018 - Researchers discover a ‘blind spot’ in atomic force microscopy
December 12, 2018 - Sprayable gel could help prevent recurrences of cancer after surgery
December 12, 2018 - SLU researchers explore how fetal exposure to inflammation can alter immunity in newborns
December 12, 2018 - How do patients want to discuss symptoms with clinicians?
December 12, 2018 - Zinc chelation may be able to deliver drug to insulin-producing cells
December 12, 2018 - Brigham researchers develop automated, low-cost tool to predict a woman’s ovulation
December 12, 2018 - Some people with Type 2 diabetes may be testing their blood sugar more often than needed
December 12, 2018 - Slow-growing type of glioma may be vulnerable to immunotherapy, suggests study
December 12, 2018 - Study provides new information regarding microRNA function in cellular homeostasis of zebrafish
December 12, 2018 - Study provides new understanding of mysterious ‘hereditary swelling’
December 12, 2018 - Researchers shed new light on how to combat Shiga and ricin toxins
December 12, 2018 - Pregnant Women Commonly Refuse Vaccines
December 12, 2018 - Drug treatment could offer new hope for some patients with brain bleeding
December 12, 2018 - Health care financial burden of animal-related injuries is growing, study says
December 12, 2018 - Macrophage cells could help repair the heart following a heart attack, study finds
December 12, 2018 - Researchers develop new system for efficiently producing human norovirus
December 12, 2018 - New artificial intelligence-based system to differentiate between different types of cancer cells
December 11, 2018 - Brazilian professors propose guidelines for therapeutic use of melatonin
December 11, 2018 - Healthy Lifestyle Lowers Odds of Breast Cancer’s Return
December 11, 2018 - New research identifies two genes linked to serious congenital heart condition
December 11, 2018 - NIH Director talks science, STEM careers with preteens
December 11, 2018 - Disabling a Cellular Antivirus System Could Improve Gene Therapy
December 11, 2018 - New tool swiftly provides accurate measure of patients’ cognitive difficulties
December 11, 2018 - NICE releases new guidelines for diagnosis and management of COPD
December 11, 2018 - Without Obamacare penalty, think it’ll be nice to drop your plan? Better think twice
December 11, 2018 - Researchers capture high-resolution X-ray and NMR image of key immune regulator
December 11, 2018 - Natural flavonoid is effective at treating leishmanisis infections, study shows
December 11, 2018 - Avoidant grievers unconsciously monitor and block mind-wandering contents, study shows
December 11, 2018 - Study identifies how hantaviruses infect lung cells
December 11, 2018 - Improving PTSD care through genetics
December 11, 2018 - Dermatology providers show interest in recommending cannabinoids to patients
December 11, 2018 - Researchers to study effects of electroconvulsive therapy on Alzheimer’s patients with aggression
December 11, 2018 - Four dried fruits have lower glycemic index than starchy foods, study finds
December 11, 2018 - Optimization of drug dose sizes can reduce pharmaceutical wastage
December 11, 2018 - Ultrarestrictive opioid prescribing strategy linked with reduction in number of pills dispensed
December 11, 2018 - PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds
December 11, 2018 - Researchers aim to identify and target high blood pressure indicators
December 11, 2018 - Researchers identify immune cell subset that may drive chronic inflammation
December 11, 2018 - Ezogabine treatment reduces motor neuron excitability in ALS patients, study shows
December 11, 2018 - One implant, two prices. It depends on who’s paying.
December 11, 2018 - Standardizing feeding practices improves growth trends for micro-preemies
December 11, 2018 - COPD Tied to Obesity in Male, Female Never-Smokers
December 11, 2018 - Flossing: Information for Caregivers
December 11, 2018 - Does breastfeeding hormone protect against type 2 diabetes?
December 11, 2018 - Educating future doctors to prescribe physical activity for their patients
December 11, 2018 - Krystal 2000 microplate design improves fluorescence and luminescence measurement
December 11, 2018 - FDA clears mobile medical app to help increase retention in recovery program for opioid use disorder
December 11, 2018 - Overcoming Challenges in High-Speed Centrifugation Experiments
December 11, 2018 - Study shows link between neighborhoods’ socioeconomic status and dietary choices
December 11, 2018 - Lower BMI before obesity surgery predicts greater post-operative weight loss, study finds
December 11, 2018 - Obesity May Be Driving Rise in Uterine Cancers
December 11, 2018 - Antioxidants may prevent cognitive impairment in diabetes
December 11, 2018 - Study discovers link between meditation and how individuals respond to feedback
December 11, 2018 - Researchers identify potential diagnostic tool for Alzheimer’s disease
December 11, 2018 - Oral cancer prognostic signature identified
December 11, 2018 - How Can I Find Out What Caused My Miscarriage?
December 11, 2018 - Novel personalized medicine tool for assessing inherited colorectal cancer syndrome risk developed
December 11, 2018 - Study uncovers 11 new genes associated with epilepsy
December 11, 2018 - Filling research gaps could help develop more disability-inclusive workplaces
December 11, 2018 - Cartilage tissue engineering brings good news for patients with cartilage defects
December 11, 2018 - Novel 3D printing workflow helps predict leaky heart valves
December 11, 2018 - Imagination can help overcome fear and anxiety-related disorders, shows study
December 11, 2018 - Are caries linked to political regime?
December 11, 2018 - Leader in Diabetes Clinical Trials Wins Naomi Berrie Award
Novel tool predicts genes that cause disease due to production of truncated proteins

Novel tool predicts genes that cause disease due to production of truncated proteins

image_pdfDownload PDFimage_print

Predicting genes that can cause disease due to the production of truncated or altered proteins that take on a new or different function, rather than those that lose their function, is now possible thanks to an international team of researchers, including researchers from Baylor College of Medicine, that has developed a new analytical tool to effectively and efficiently predict such candidate genes.

The tool allowed the researchers to identify 252 candidate ‘disease genes.’ Some of these genes had already been studied in other labs where it was shown that they most likely cause disease by producing defective proteins, which supports the effectiveness of this novel tool. The study appears in the American Journal of Human Genetics.

“Genes can cause disease because of mutations that result in loss-of-function; that is when the gene is not producing the protein it encodes. But genes also can cause disease when mutations result in the production of a defective protein with a new function – a gain-of-function mutation – that may interfere with the function of the normal protein,” said corresponding author Dr. Claudia M.B. Carvalho, assistant professor of molecular and human genetics at Baylor College of Medicine.

In 2015, Carvalho and her colleagues proposed that a gain-of-function mutation in the gene DVL1 is a common cause of dominant Robinow syndrome, a genetically heterogeneous condition for which there was no molecular explanation. They found variants of the gene DVL1 producing a protein that was defective because it was missing a piece at one end.

“These findings suggested that other genes also can cause disease, not by loss of function, but by gain of function,” Carvalho said. “We wanted to know which genes might mechanistically behave in a similar manner.”

“This was not an easy task,” said first author Dr. Zeynep Coban-Akdemir, a bioinformatics and genetics and genomics postdoctoral associate of molecular and human genetics at Baylor. “There are computational tools to predict loss of function but not to predict genes that may cause disease through gain of function, so we started this project to do that.”

The researchers began by identifying clues that a gene may cause disease by a gain-of-function mechanism.

“The clue usually is the location of the mutation in the gene. If the mutation, in this case one called premature termination codon (PTC), happens in the very end of the gene, then this usually predicts that the defective gene and messenger RNA (mRNA) will likely escape the cell’s surveillance mechanisms, which then leads to the production of a defective protein and disease by gain of function,” Coban-Akdemir said.

But if the PTC mutation happens either in the middle or the beginning of the gene, then this usually predicts that the surveillance mechanism will work and, therefore the mRNA will be destroyed and no protein will be produced by the mutated gene. In this case, disease will happen by loss of function of the gene.

“We began working with control datasets, which include the genes of large numbers of people without disease. We reasoned that if PTC mutations in a particular gene accumulated near the beginning or the middle of the gene, and not at the end, then that gene would likely be intolerant to the mutations at the end of the gene,” Coban-Akdemir said. “Genes with this characteristic became our candidates for genes that could be causing disease by a gain-of-function mechanism.”

Next, the researchers looked into another database including the genes of people with diseases and investigated whether the candidate genes they had previously identified were in a cohort of people with disease. The genes they identified this way can potentially cause disease by gain of function.

“The importance of this work is that there was already a way to analyze genes that caused disease because of loss of function, so here we designed and tested a tool that allows us to make predictions about which of the many genetic alterations found in patients are most likely playing a role in their disease by gain of function,” Carvalho said. “Once we identify the genes, we may conduct further studies to determine ways to help the patients.”

“This is an incredible example of what a fantastic benchtop experimental scientist and a terrific computational scientist can do when they put their intellects together and study the wonderful BigData generated by the Baylor College of Medicine Human Genome Sequencing Center,” said senior author Dr. Jim Lupski, Cullen Professor of Molecular and Human Genetics at Baylor, principal investigator at the Baylor Hopkins Center for Mendelian Genomics and faculty with the Baylor genetics and genomics graduate training program. “I look forward to reading about work emanating from professor Carvalho and Dr. Coban-Akdemir’s study for years to come.”

Source:

https://www.bcm.edu/news/molecular-and-human-genetics/analytical-tool-predicts-disease-causing-gene

Tagged with:

About author

Related Articles