Breaking News
August 17, 2018 - Female mosquitoes quickly evolve selective mating behavior when faced with threats
August 17, 2018 - FDA Grants Breakthrough Therapy Designation to Daiichi Sankyo’s FLT3 Inhibitor Quizartinib for Relapsed/Refractory FLT3-ITD AML
August 17, 2018 - Resistance training and exercise motivation go hand-in-hand
August 17, 2018 - A lesson for future doctors: Listen to and learn from your patients
August 17, 2018 - NUS study discovers a bidirectional regulator and shines light on A-to-I RNA editing in cancer cells
August 17, 2018 - Research shows link between high blood levels of omega-3s and better brain function in children
August 17, 2018 - Researchers propose new theory for how rare gene mutations cause Alzheimer’s disease
August 17, 2018 - Digital psychiatric therapy can ‘rewire’ the brain in children with ADHD, study shows
August 17, 2018 - Psychologist to assess how the brain maintains precise short-term and long-term memories
August 17, 2018 - Eating white button mushrooms could improve regulation of glucose in the liver
August 17, 2018 - Scientists identify mutational signatures in ovarian cancer
August 17, 2018 - Sun Pharma receives U.S. FDA approval for CEQUA to treat patients with dry eye disease
August 17, 2018 - Teva Announces Updated Indication and Vial Presentation for Granix (tbo-filgrastim) Injection in United States
August 17, 2018 - Study shows DNA methylation related to liver disease among obese patients
August 17, 2018 - Life on the border: Back at Stanford, ready to pitch in
August 17, 2018 - New device for accurately placing hemodialysis catheters on kidney patients
August 17, 2018 - New strategy accelerates, automates process of prototype molecule optimization
August 17, 2018 - Study finds role of autoimmunity in development of COPD
August 17, 2018 - Researchers transform research tool to study neuronal function
August 17, 2018 - Cognitive impairment does not equate to unhappiness in older adults
August 17, 2018 - Peer Comparisons Can Decrease Risky Prescribing Patterns
August 17, 2018 - Susceptible genes identified for childhood chronic kidney disease
August 17, 2018 - Research uncovers miscarriage cause, identifies potential targets for treatment
August 17, 2018 - Bacterial armor could be new target for antibiotics | News Center
August 17, 2018 - FDA expands approval of Vertex’ cystic fibrosis medicine to treat children aged 12 to
August 17, 2018 - Give Your Child a Head Start With Math
August 17, 2018 - Ground-breaking study tests whether rejected livers can be made viable for transplantation
August 16, 2018 - New algorithm could improve diagnosis of rare diseases | News Center
August 16, 2018 - SCHILLER introduces latest generation of ECG device, CARDIOVIT AT-102 G2
August 16, 2018 - Proper treatment, refraining from smoking can reduce heart disease risk from type 2 diabetes
August 16, 2018 - Mount Sinai study could transform treatment for patients with retinal degenerative diseases
August 16, 2018 - Penn researchers develop first mouse model of idiopathic pulmonary fibrosis
August 16, 2018 - Four tips to help prevent fall allergy symptoms
August 16, 2018 - Women’s Preventive Services Initiative says screen all women annually for urinary incontinence
August 16, 2018 - At Stanford, patient discovers the source of her headaches, nausea | News Center
August 16, 2018 - To Prevent Injuries in Young Baseball Players, Chris Ahmad Reaches Out to Parents
August 16, 2018 - Restoring blood flow may be linked to longer survival in patients with critical limb ischemia
August 16, 2018 - New model of genetically engineered immune cells may help fight solid tumors
August 16, 2018 - Maternal stress increases anxious and depressive-like behaviors in female offspring
August 16, 2018 - Childhood exposure to secondhand smoke increases risk of COPD death in adulthood
August 16, 2018 - Scientists uncover key control mechanism of DNA replication
August 16, 2018 - NIH begins first-in-human trial of experimental live, attenuated Zika virus vaccine
August 16, 2018 - Two diabetes medications don’t slow progression of type 2 diabetes in youth
August 16, 2018 - 5 Questions: How Stanford research is making MRI scans safer for kids | News Center
August 16, 2018 - Columbia Celebrates 25th Anniversary of White Coat Ceremony
August 16, 2018 - Phonak’s new smallest and most discreet Virto B-Titanium hearing aid
August 16, 2018 - New project aims to study growth of water-based microorganisms
August 16, 2018 - Immune cell found to play important role in photosensitivity
August 16, 2018 - Higher social dominance linked to faster decision-making in men
August 16, 2018 - Blood test in early pregnancy could determine a woman’s later risk for gestational diabetes
August 16, 2018 - New research confirms link between DDT exposure and autism
August 16, 2018 - Neurodevelopmental Anomalies, Birth Defects Linked to Zika ID’d
August 16, 2018 - Risk of heart failure up in ALVSD patients with diabetes
August 16, 2018 - Exercise reduces symptoms and fatigue in patients with chronic kidney disease
August 16, 2018 - Study reveals role of RUNX proteins in DNA repair
August 16, 2018 - New research finds no harm from average salt consumption
August 16, 2018 - Researchers develop new way of testing bacterial resistance to antibiotics
August 16, 2018 - Magnetic gene in aquarium fish could open doors to treatment for epilepsy, Parkinson’s
August 16, 2018 - Five tips for successful long-term breastfeeding
August 16, 2018 - Researchers identify brain networks involved in object naming
August 16, 2018 - Promoting HPV Vaccine Doesn’t Prompt Risky Sex by Teens: Study
August 16, 2018 - Treating Rheumatoid Arthritis: Search for a Cure
August 16, 2018 - Research shows in the long run, charcoal toothpaste likely won’t whiten teeth
August 16, 2018 - Seattle Children’s opens new clinic to provide convenient access to pediatric specialty care services
August 16, 2018 - Curious case of the lost contact lens
August 16, 2018 - GN Hearing unveils world’s first Premium-Plus hearing aid
August 16, 2018 - Parental life span linked with increased longevity and health in daughters
August 16, 2018 - Health leaders reveal ten most important medicines in NHS history
August 16, 2018 - Mobile health devices diagnose hidden heart condition in at-risk populations
August 16, 2018 - When it comes to shedding pounds, it pays to think big
August 16, 2018 - Liva Healthcare announces appointment of Thomas Cooke as clinical services manager in the UK
August 16, 2018 - New digital pharmacy aims to help people living with chronic care conditions
August 16, 2018 - Preventing ACL injuries in high school athletes
August 16, 2018 - Experts provide insight into novel concepts and approaches for stroke rehabilitation
August 16, 2018 - Scientists reverse congenital blindness in mouse model
August 16, 2018 - Study shows link between use of benzodiazepines and increased risk of Alzheimer’s disease
August 16, 2018 - Study provides new insight into how ‘trash bag of the cell’ traps and seals off waste
August 16, 2018 - Trial shows PARP inhibitor as novel treatment option for patients with advanced breast cancers
August 16, 2018 - Prenatal exposure to violence increases toddlers’ aggressive behavior to their mothers
August 16, 2018 - Can manipulating gut microbes improve cardiac function in patients with heart failure?
Hidden DNA sequences tied to schizophrenia, bipolar risk | News Center

Hidden DNA sequences tied to schizophrenia, bipolar risk | News Center

image_pdfDownload PDFimage_print

A series of repeated DNA sequences unique to humans may be linked to the development of schizophrenia and bipolar disorder, according to a new study by researchers at the School of Medicine.

The finding suggests that the rapid evolutionary changes that led to the extraordinary complexity of the human brain may have predisposed our species to psychiatric diseases not found in other animals. It also outlines a possible way to one day identify people at risk for, and ways to intervene in, these disorders.

Although the sequences exist within a small stretch of DNA that has been previously linked to schizophrenia and bipolar disorder, they represent a kind of genomic stutter that is particularly difficult to detect using conventional sequencing methods. As a result, they’ve been effectively hidden from researchers attempting to pinpoint a specific mutation that contributes to risk for the diseases.

“The human genome reference sequence shows only 10 repeats of this 30-nucleotide sequence, but we’ve found that individuals actually have from 100 to 1,000 repeats, and that the sequence itself can vary,” said professor of developmental biology David Kingsley, PhD. “In contrast, chimpanzees and other primates have just one repeat of the sequence, indicating that the region has greatly expanded during human evolution. Some of the sequence variants now found in people are also closely associated with the development of schizophrenia and bipolar disorder.”

Kingsley, who is a Howard Hughes Medical Institute investigator, is the senior author of the research, which was published Aug. 9 in the Journal of Human Genetics. Graduate student Janet Song and former postdoctoral scholar Craig Lowe, PhD, share lead authorship of the study.

The evolution of our brains

Song and Lowe didn’t start out intending to study psychiatric disorders. Instead, Kingsley and his colleagues have long been interested in identifying regions of the human genome that differ from those of our closest animal relatives such as primates. Studying these regions is a way to trace evolutionary changes that confer some of our uniquely human traits.

But many of these seeming advances, such as walking upright or changing jaws and teeth to accommodate different foods or larger brains come at a cost. New styles of walking and new diets in humans have brought with them a high incidence of bad backs, sore knees and impacted wisdom teeth. Some researchers have wondered whether the rapid evolution of our large, complex brains could also be the reason why humans suffer some psychiatric disorders that don’t appear to afflict members of other species.

It’s a great way for evolution to experiment by ‘tuning’ genes to achieve variable outcomes.

“Human evolution has given us big and active brains and a remarkable cognitive capacity,” Kingsley said. “But a side effect of this could be an increased risk for other, less desirable outcomes.”

About 3 percent of people worldwide suffer from bipolar disease or schizophrenia, which have few effective treatments. Sufferers are at increased risk of suicide, and the disorders are one of the top causes of disability. Although the two diseases are distinct, many previous efforts to identify their genetic causes have implicated genes involved in the transport of calcium into and out of brain cells in response to external signals. These calcium channels are responsible for many critical biological processes, and drugs modulating their function are widely used to treat high blood pressure and cancer.

One calcium channel gene in particular, CACNA1C, has repeatedly been associated with a risk of both schizophrenia and bipolar disorder. But until now, no one has been able to pinpoint any specific disease-associated DNA mutations within the coding region of CACNA1C. Instead, the culprit seemed to lurk within a stretch of 100,000 nucleotides in a noncoding portion of the gene called an intron.

In their quest to identify how the genome sequences of humans and primates vary, Song and Lowe discovered that the human CACNA1C gene contains a sequence that repeats as many as 1,000 times a 30-nucleotide sequence that is found only once in the chimpanzee genome. Large, repeated arrays such as these often form structures that can affect the expression of nearby genes but, because they are unstable when grown in many bacterial strains in the laboratory, they can stymie traditional sequencing methods.

‘Invisible to researchers’

“This massive array was, for the most part, invisible to researchers,” Kingsley said. “It caught our attention because it is located in the region that had been previously linked to schizophrenia and bipolar disease risk. We wondered whether, given all the ‘flavors’ of variation in length and sequences, some combinations of the repeats might confer increased risk to psychiatric disorders by affecting the expression levels of the CACNA1C gene.”

The researchers investigated whether certain sequence combinations in the repeated array correlated with a diagnosis of schizophrenia or bipolar disorder in participants in the 1,000 Genomes Project — an international effort to catalog and understand human genetic variation. They found that although some combinations were strongly linked to the development of schizophrenia or bipolar disorder, others were enriched in patients with protective versions of the gene. When Kingsley and his colleague tested different versions of the arrays for their effects on gene expression in cultured human neural precursor cells, the risk- and protective-associated sequence arrays showed variable abilities to modulate gene expression.

“There’s been a long-standing area of speculation in the literature that this kind of repeated array is likely to both change gene function and generate new variants that will further alter expression levels,” Kingsley said. “It’s a great way for evolution to experiment by ‘tuning’ genes to achieve variable outcomes.”

The researchers’ experiments suggest that those array combinations that appear to protect against the development of schizophrenia and bipolar disorder could increase the expression of CACNA1C. However, different cells and brain regions may react differently to the sequences, and it’s not yet clear precisely how changes in CACNA1C expression affect disease risk. Regardless, the involvement of a calcium channel gene is of interest because drugs targeting these channels are already widely used in humans.

“Better classification of patients based on their repeat arrays in the CACNA1C gene may help identify the particular patient cohorts most likely to respond to existing calcium channel drugs,” Kingsley said. “The best match between patients and drugs is not known right now, but we do hope that genotype-based drug targeting may lead to improved treatments in the future for these devastating diseases.”   

The research was supported by the National Institutes of Health (grant K25DE0253160), the National Science Foundation and the Howard Hughes Medical Institute.

Stanford’s Department of Developmental Biology also supported the work.

About author

Related Articles