Breaking News
December 13, 2018 - Long-term Benefit of Steroid Injections for Knee Osteoarthritis Challenged
December 13, 2018 - Adding new channels to the brain remote control
December 13, 2018 - In the Spotlight: A different side of neuroscience
December 13, 2018 - Medical Marvels: Using immunotherapy for melanoma that spread to the brain
December 13, 2018 - Puzzles do not keep dementia away finds study
December 13, 2018 - New mouse model shows potential for rapid identification of promising muscular dystrophy therapies
December 13, 2018 - Study reveals urban and rural differences in prenatal exposure to essential and toxic elements
December 13, 2018 - New collaborative partnership in quest of novel antibiotics
December 13, 2018 - Single tau molecule holds clues to help diagnose neurodegeneration in its earliest stages
December 13, 2018 - AHA Scientific Statement: Low Risk of Side Effects for Statins
December 13, 2018 - What Is Acute Flaccid Myelitis?
December 13, 2018 - How bereaved people control their thoughts without knowing it
December 13, 2018 - Health care democratization underway, according to 2nd annual Stanford Medicine Health Trends Report | News Center
December 13, 2018 - Going Beyond a Single Color
December 13, 2018 - London-based startup launches ‘thedrug.store’ aiming to clean up CBD industry
December 13, 2018 - Loss of tight junction barrier protein results in gastric cancer development
December 13, 2018 - Novel way to efficiently deliver anti-parasitic medicines
December 13, 2018 - RKI publishes new data on disease prevention and utilization of medical services
December 13, 2018 - High-tech, flexible patches sewn into clothes could help to stay warm
December 13, 2018 - Restoring Hair Growth on Scarred Skin? Mouse Study Could Show the Way
December 13, 2018 - Probiotic use may reduce antibiotic prescriptions, researchers say
December 13, 2018 - Drug repositioning strategy identifies potential new treatments for epilepsy
December 13, 2018 - Chronic rhinitis associated with hospital readmissions for asthma and COPD patients
December 13, 2018 - Food poisoning discovery could save lives
December 13, 2018 - Cloned antibodies show potential to treat, diagnose life-threatening fungal infections
December 13, 2018 - Exercise may reduce colorectal cancer risk after weight loss
December 13, 2018 - Russian scientists create hardware-information system for brain disorders treatment
December 13, 2018 - Moderate alcohol consumption linked with lower risk of hospitalization
December 13, 2018 - Nurturing Healthy Neighborhoods | NIH News in Health
December 13, 2018 - Rise in meth and opioid use during pregnancy
December 13, 2018 - Researchers gain new insights into pediatric tumors
December 13, 2018 - FSU study finds racial disparity among adolescents receiving flu vaccine
December 13, 2018 - Study investigates attitudes toward implementation of ‘sex as a biological variable’ policy
December 13, 2018 - Drug cocktail induces cancer cell death by switching off energy supply
December 13, 2018 - Baculovirus virion completely eliminates liver-stage parasites in mouse model
December 13, 2018 - Researchers create noninvasive technology that detects when nerve cells fire
December 13, 2018 - Allen Institute for Immunology to partner with CU Anschutz to understand dynamics of human immune system
December 13, 2018 - Inability to do daily living tasks delays discharge of mental health patients
December 13, 2018 - Treating patients with hypertension induced albuminuria
December 13, 2018 - New substance could improve efficacy of established breast cancer treatments
December 13, 2018 - Scientists develop new stem cell line to study conversion of stem cells into muscle
December 13, 2018 - Re-programming the body’s energy pathway boosts kidney self-repair
December 13, 2018 - Research findings could help improve treatment of anxiety and post-traumatic stress disorders
December 13, 2018 - The Microbiome Movement announce Microbiotica as official industry partner
December 13, 2018 - New study reveals potential benefits of cEEG monitoring for infant ICU patients
December 13, 2018 - Whole-body imaging PET/MRI offers information to guide treatment options for prostate cancer
December 13, 2018 - International investigators fight against the negative campaign on benzodiazepines
December 13, 2018 - Targeting biochemical pathway may lead to new therapies for alleviating symptoms of anxiety disorders
December 13, 2018 - FDA Approves Tolsura (SUBA®-itraconazole capsules) for the Treatment of Certain Fungal Infections
December 13, 2018 - Are scientists studying the wrong kind of mice?
December 13, 2018 - Computer memory: A scientific team builds a virtual model of a key brain region
December 13, 2018 - Visual inspection alone is insufficient to diagnose skin cancer
December 13, 2018 - Paternal grandfather’s access to food associated with grandson’s mortality risk
December 13, 2018 - Our brain senses angry voices in a flash, study shows
December 13, 2018 - PM2.5 Exposure Linked to Asthma Rescue Medication Use
December 13, 2018 - Can’t exercise? A hot bath may help improve inflammation, metabolism, study suggests
December 13, 2018 - Can artificial intelligence help doctors with the human side of medicine?
December 13, 2018 - Virginia Tech and UC San Diego researchers team up to develop nonopioid drug for chronic pain
December 13, 2018 - NIH offers support for HIV care and prevention research in the southern United States
December 12, 2018 - Activating brain region could revive the urge to socialize among opioid addicts
December 12, 2018 - Relationship impairment appears to interfere with seeking mental health treatment in men
December 12, 2018 - Sleep, Don’t Cram, Before Finals for Better Grades
December 12, 2018 - Effective treatments for urticarial vasculitis
December 12, 2018 - Gun violence is a public health issue: One physician’s story
December 12, 2018 - The Science of Healthy Aging
December 12, 2018 - Yes to yoghurt and cheese: New improved Mediterranean diet
December 12, 2018 - Researchers uncover a number of previously unknown insecticide resistance mechanisms
December 12, 2018 - Regulating the immune system’s ‘regulator’
December 12, 2018 - In breaking bad news, the comfort of silence
December 12, 2018 - Study finds upward link between alcohol consumption and physical activity in college students
December 12, 2018 - FDA issues warning letter to Zhejiang Huahai Pharmaceutical involved in valsartan recall
December 12, 2018 - Weight history at ages 20 and 40 could help predict patients’ future risk of heart failure
December 12, 2018 - Presence of antiphospholipid antibodies tied to first-time MI
December 12, 2018 - DNA analysis finds that stethoscopes are teaming with bacteria
December 12, 2018 - New study could help inform research on preventing falls
December 12, 2018 - Women and men with heart attack symptoms receive different care from EMS
December 12, 2018 - Disrupted biological clock can contribute to onset of diseases, USC study shows
December 12, 2018 - New publications generate controversy over the value of reducing salt consumption in populations
December 12, 2018 - New data from TAILORx trial confirms lack of chemo benefit regardless of race or ethnicity
December 12, 2018 - Specific class of biomarkers can accurately indicate the severity of cancer
Researchers uncover new details in how the olfactory epithelium develops

Researchers uncover new details in how the olfactory epithelium develops

image_pdfDownload PDFimage_print

Dogs, known for their extraordinarily keen senses of smell, can be trained to use their sensitive sniffers to find drugs, bombs, bed bugs, missing hikers and even cancer. Among dogs and other animals that rely on smell, at least one factor that may give them an advantage is a sheet of tissue in the nasal cavity.

In humans, this tissue — called the olfactory epithelium — is a single flat sheet lining the roof of the nasal cavity. In dogs, however, the olfactory epithelium forms a complex maze, folding and curling over a number of bony protrusions, called turbinates, that form in the nasal cavity. The olfactory epithelium contains specialized neurons that bind to odor molecules and send signals to the brain that are interpreted as smell. Dogs have hundreds of millions more of these neurons than people do. It is assumed this added structural complexity is responsible for dogs’ superior ability to smell. But, surprisingly, that has never been shown scientifically.

Now, researchers at Washington University School of Medicine in St. Louis have uncovered new details in how the olfactory epithelium develops. The new knowledge could help scientists prove that turbinates and the resulting larger surface area of the olfactory epithelium are one definitive reason dogs smell so well.

“We think the surface area of the sheet matters in how well animals smell and in the types of smells they can detect,” said David M. Ornitz, MD, PhD, the Alumni Endowed Professor of Developmental Biology. “One reason we think this stems from differences in the complexity of these turbinates. Animals that we think of as having a great sense of smell have really complex turbinate systems.”

The study, published Aug. 9 in the journal Developmental Cell, also could help answer a longstanding evolutionary question: How did animals’ senses of smell become so enormously variable? The way these abilities came to diverge over evolutionary history remains a mystery. Understanding these signals could help scientists tease out how dogs evolved an extraordinary olfactory system and humans wound up with a comparatively stunted one.

First author Lu M. Yang, a graduate student in Ornitz’s lab, found that a newly discovered stem cell the researchers dubbed FEP cells control the size of the surface area of the olfactory epithelium. These stem cells also send a specific signaling molecule to the underlying turbinates, telling them to grow. The evidence suggests that this signaling crosstalk between the epithelium and the turbinates regulates the scale of the olfactory system that ends up developing, sometimes resulting in olfactory epithelia with larger surface areas, such as in dogs.

When the stem cells can’t signal properly, turbinate growth and olfactory epithelium surface area experience an arrested development. To study this in the lab, mice with such olfactory stunting could, in theory, be compared with typical mice to learn more about how these signals govern the final complexity of an animal’s olfactory system.

“Before our study, we didn’t know how the epithelium expands from a tiny patch of cells to a large sheet that develops in conjunction with complex turbinates,” Yang said. “We can use this to help understand why dogs, for example, have such a good sense of smell. They have extremely complex turbinate structures, and now we know some of the details about how those structures develop.”

Source:

Scientists uncover new details in how sense of smell develops

Tagged with:

About author

Related Articles