Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
New strategy accelerates, automates process of prototype molecule optimization

New strategy accelerates, automates process of prototype molecule optimization

The search for new medicinal molecules with predetermined properties is a rather complex, expensive and time-consuming process, especially in oncology. Modern science allows us to accelerate this search through the use of computer technology and the introduction of automated processes. In the development of biologically active molecules, there are two basic concepts – a medicinal molecule and a therapeutic target.

The molecule binds to the target, most often a protein, thereby affecting certain cellular functions. If the therapeutic target is known, then the first step in the design of a new drug is to search for small molecules that can interact with the target. The molecules are selected from huge virtual chemical libraries, which include millions of compounds.

During the last decade, the process of selecting potential medicinal molecules has been greatly simplified by the introduction of robotic high-throughput screening, which allows testing thousands of compounds in a short time.

Compound prototypes that have been screened during high-throughput screening, although capable of interacting with the protein of interest, are still far from the final drug and cannot be immediately used in pre-clinical and clinical trials.

To begin preclinical studies, biologically active molecules must meet a number of criteria, such as high activity with respect to the target protein, the absence of effect on other targets, and good pharmacokinetics, i.e. the ability of the molecule to enter the body, to be distributed there, to be cleared from the body and to have no toxic effect on it. In search for a molecule that meets all the necessary criteria, prototype compounds undergo an optimization phase, which is also quite costly and time consuming.

According to Alexei Fedorov, Head of the Organic Chemistry Department at the Lobachevsky University, the international research group has developed a strategy to significantly accelerate and automate the process of prototype molecule optimization. Such molecules then become candidates for subsequent preclinical trials.

“In this approach, we have combined the design of a chemical library focused at the therapeutic target of interest, virtual (computer) screening of the library obtained, as well as automated synthesis and study of the biological activity of the resulting molecules in vitro,” notes Alexei Fedorov

At the first stage of this approach, the interaction model of the chosen prototype molecule with the target is determined using X-ray diffraction analysis. Then, based on the data obtained, a new virtual chemical library is designed. In this case, the prototype molecule is the main building block, to which new components that correspond to the structure of the target protein are added.

To integrate building blocks into new molecules, carefully selected chemical reactions are used that meet the requirements of medical chemistry. Selection of chemical reactions ensures that the compounds of a new chemical library can be easily obtained by organic chemistry methods in one or two stages with high yields and without by-products.

The next stage involves computer screening of the obtained virtual library in order to select the molecules capable of optimal interaction with the target and possessing the necessary properties, such as solubility, bioavailability, toxicity, etc. All this significantly increases the chances of finding a potential candidate for the role of a medicinal molecule.

Finally, the compounds selected in the course of computer screening are synthesized, and their biological properties are tested in vitro. Both these processes can now be fully automated and can be performed by robots, which significantly reduces the development time of new drug compounds.

The effectiveness of the proposed strategy was demonstrated by optimizing antitumor substances – inhibitors of bromodomain-containing proteins. This class of proteins is involved in the regulation of a number of genes that play a key role in the development of cancer.

“Earlier, our group identified a prototype molecule that can effectively interact with this therapeutic target. Prototype optimization using the described technique made it possible to obtain several candidate molecules that bind to the target 60 times better. They also showed improved selectivity, water solubility, and efficiency in cell tests. Currently, the molecules are being prepared for preclinical trials to treat various types of tumors,” concludes Professor Fedorov.

At present, the targeted design of new medicinal molecules has become an important part of pharmacology. The transition from a trial and error method to a truly rational design of medicines, achieved through the introduction of computer and robotic approaches into medical chemistry, opens the way to a more efficient and faster production of new medicinal molecules with the desired physico-chemical properties and biological action.

Source:

http://eng.unn.ru/news2/lobachevsky-university-scientists-develop-an-effective-approach-to-optimizing-medicinal-molecules

Tagged with:

About author

Related Articles