Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Researchers uncover surprising new role for inhibition in the cerebellum

Researchers uncover surprising new role for inhibition in the cerebellum

Almost everyone is familiar with the unique mixture of surprise and confusion that occurs after making a mistake during an everyday movement. It’s a fairly startling experience – stumbling on a step or accidentally missing your mouth when taking a drink. These actions are so ingrained that any mishap is almost always followed by the question “Why in the world did I just do that?” This momentary bewilderment is due to the fact that our brains have an extraordinary capacity for learning skilled movements. So much so that our routine actions, such as climbing stairs, become second nature. For the most part we don’t even consciously think about them…that is until we make a mistake.

While mistakes (errors in motor performance) don’t occur very frequently once we’ve picked something up, they are the tool used by the brain to evaluate and adjust our movements in hopes that next time, we won’t stumble or spill our drinks so easily. As the saying goes “We learn from our mistakes,” but how do our brains turn the motor errors we make into meaningful and reliable learning?

In a recent publication in Neuron, researchers from the lab of Dr. Jason Christie, Research Group Leader at the Max Planck Florida Institute for Neuroscience (MPFI), have discovered part of the answer to this longstanding question. Uncovering a surprising new role for inhibition in the cerebellum, Dr. Christie’s team has broadened the current understanding of neural computation and provided fundamental insights into the mechanisms and principles underlying motor learning.

“Learning isn’t a monolithic event, that either happens or doesn’t,” describes Dr. Christie. “It’s a much more complex behavior that can vary in duration, magnitude and direction. Our findings demonstrate that in the cerebellum, motor learning can occur along a continuum and what seems to be the key, is the influence of an inhibitory cell class called molecular layer interneurons.”

An anatomically unique region of the brain, the cerebellum plays a critically important role in regulating motor control and coordination. Despite its relatively small size- only about 10% of the entire brain- the cerebellum houses roughly half of our total neurons, around 50 billion. While receiving many inputs from various regions of the brain, the cerebellum integrates and sends refined information out through a single type of specialized neuron called a Purkinje cell. These cells receive two well characterized excitatory inputs and a lesser studied inhibitory input, helping to guide motor behavior and facilitate learning.

“Thousands of excitatory inputs by parallel fibers, set the stage for Purkinje cell activation by providing sensory and motor context for actions,” describes Audrey Bonnan, a Postdoctoral Researcher in the Christie Lab and one of the publication’s first authors. “It’s these inputs that activate Purkinje cells and maintain normal coordination and movement. When we make a mistake however, a second excitatory input from a climbing fiber, arrives simultaneously and delivers an instructive signal. This new information detailing motor error, weakens the synaptic connections between parallel fibers and Purkinje cells; producing a change in behavior and ultimately allowing for learning to occur. But the function of inhibitory inputs in this process, was still largely unknown.”

This alteration in synaptic strength, known as synaptic plasticity, is thought to be the mechanistic correlate of learning. Uncovering how inhibitory interneurons influence plasticity is the first step in gaining insights into their role in motor learning. To address this question, the team performed simultaneous electrical stimulation of the excitatory inputs encoding contexts and those encoding signaling errors, simulating the events that occur during learning. Using electrophysiology to record the output of the Purkinje cell, the researchers then precisely activated inhibitory interneurons by use of a light-based approach for neural stimulation (optogenetics). This approach benefited from a collaboration with MPFI’s Taniguchi lab that allowed optogenetic targeting of only molecular layer interneurons.

“We found that inhibition allows for an entire spectrum of outcomes,” notes Dr. Christie. “Without inhibition, Purkinje cells showed the expected synaptic weakening caused by co-activation of parallel fibers and climbing fibers. By strongly activating molecular layer interneurons, there was a complete reversal of plasticity where synapses were strengthened with the addition of inhibition. Surprisingly with weak activation of these interneurons, plasticity seemed to be negated where no change occurred at all.”

Taking the investigation one step further, inhibition produced a similar type of reversal on learning behavior. Using dual color optogenetics, the MPFI researchers evaluated the effect of molecular layer activation during adaptive vestibulo-ocular reflex or VOR, which helps to maintain a stable gaze by moving the eyes in the opposite direction of head movement. With training, the VOR can undergo learned adaptation where eye movement during the reflex increases (gain increase). Consistent with plasticity findings, strong activation of MLIs produced a complete reversal in learning of VOR, causing dramatically less eye movement (gain decrease). With weak activation of MLIs, little to no change occurred, matching animals with untrained VORs.

“Inhibition seems to dramatically broaden the range with which cells can respond to stimuli,” explains Dr. Christie. “Instead of the brain having only two options -learning or not learning- there can be a tremendous amount of variation in between. For example, learning a little or learning a lot. It’s like black and white versus shades of gray, where the shades of gray allow for a greater amount of behavioral flexibility.”

Dr. Christie notes that the work was a tremendous effort between first authors Matt Rowan, Ph.D., now an Assistant Professor at Emory University; Audrey Bonnan, Ph.D., and Ke Zhang, a graduate student in the International Max Planck Research School for Brain and Behavior, and that their surprising findings have opened up a whole new avenue of inquiry for the future.

Tagged with:

About author

Related Articles