Breaking News
January 22, 2019 - Blood test may detect early signs of lung-transplant rejection
January 22, 2019 - Blood marker could aid in early prediction of Alzheimer’s progression
January 22, 2019 - Orthodontic treatment does not guarantee future dental health
January 22, 2019 - Rutgers researchers discover cause of bone loss in people with joint replacements
January 22, 2019 - Diversity among rural Africans extends to their gut microbiomes
January 22, 2019 - Newly developed biological system lets cells to create self-curving cornea
January 22, 2019 - VTv Therapeutics Announces Publication of Comprehensive Data in Science Translational Medicine Detailing the Discovery and Clinical Development of TTP399, including Results of Phase 2 AGATA Study
January 22, 2019 - about one in three adults with prediabetes has arthritis
January 22, 2019 - A look at how data is democratizing health care
January 22, 2019 - Alcohol-Linked Disease Overtakes Hep C As Top Reason For Liver Transplant
January 22, 2019 - Researchers identify new genes linked with age-related macular degeneration
January 22, 2019 - MPFI researchers identify synaptic logic for connections between two brain hemispheres
January 22, 2019 - New study extends our knowledge of the link between miRNAs and cancer
January 22, 2019 - Genetic changes may predict likelihood of relapse in breast cancer patients
January 22, 2019 - Antiepileptic drug use by people with Alzheimer’s disease linked to accumulation of hospital days
January 22, 2019 - IUPUI researcher receives $2.85 million grant to find ways to improve bone strength
January 22, 2019 - Precision medicine can help keep astronauts healthy during deep space missions
January 22, 2019 - Detecting signs of neurodegeneration earlier and more accurately
January 22, 2019 - Mouse studies challenge ‘inhibition’ theory of autism
January 22, 2019 - SSB launches BIOSTAT RM TX single-use bioreactor for producing consistent quality cellular products
January 22, 2019 - Experimental drug can positively modify key characteristic behavior in FXS patients
January 22, 2019 - Low-Income Women Lack Menstrual Hygiene Supplies
January 22, 2019 - Better mouse model built to enable precision-medicine research for Alzheimer’s
January 22, 2019 - Molecular profiling of precancerous lung lesions could lead to early detection and new treatments
January 22, 2019 - Genetic factors influence where fat is stored in our bodies
January 22, 2019 - The Psychology Behind Sticking to Your New Year’s Resolutions
January 22, 2019 - Scientists aim to find genetic causes of developmental abnormalities in the vagina and uterus
January 22, 2019 - New survey reveals scale of preventative healthcare challenge in the UK
January 22, 2019 - Looming Global Crisis Means People’s Diets Must Change: Experts
January 22, 2019 - Excessive social media use is comparable to drug addiction
January 22, 2019 - Researchers show how mechanical stress affects bone development
January 22, 2019 - Study takes a step closer to understanding the body’s response to opioid painkillers
January 22, 2019 - Unexpected connection found between feeding and memory centers of the brain
January 22, 2019 - A revolutionary approach transforms bone trauma treatment
January 22, 2019 - Early studies and recent clinical trials on nerve growth factor
January 22, 2019 - Dry Mouth and Older Adults: Information for Caregivers
January 22, 2019 - Are your grandparents getting tipsy at the holiday party?
January 22, 2019 - New machine learning algorithms identify early symptoms of urinary tract infections
January 22, 2019 - Young women skipping the Pap smear test due to embarrassment
January 22, 2019 - A global influenza pandemic high on the WHO’s agenda
January 22, 2019 - Amgen Makes All Repatha (evolocumab) Device Options Available In The US At A 60 Percent Reduced List Price
January 22, 2019 - Elastronics—hydrogel-based microelectronics for localized low-voltage neuromodulation
January 22, 2019 - Branched-chain amino acids in tumors can be targeted to prevent and treat cancer
January 22, 2019 - Fueling macrophages with energy to attack and eat cancer cells
January 22, 2019 - Amgen And UCB Receive Positive Vote From FDA Advisory Committee In Favor Of Approval For Evenity (romosozumab)
January 22, 2019 - Does being bilingual make children more focused? Study says no
January 22, 2019 - Study reveals new genes and biological pathways linked to osteoarthritis
January 22, 2019 - FSU study provides better understanding of spinal cord injuries
January 22, 2019 - Delaying bath for newborn babies increases breastfeeding rates, finds study
January 21, 2019 - WHO identifies non-communicable diseases as major threat to human health
January 21, 2019 - Many parents still try non-evidence-based cold prevention methods for children
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Researchers discover new blood vessel system in bones
January 21, 2019 - Simple blood test reliably detects signs of Alzheimer’s damage before symptoms
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
Novel system can pinpoint ingestible implants inside the body using wireless signals

Novel system can pinpoint ingestible implants inside the body using wireless signals

image_pdfDownload PDFimage_print

Medical processes like imaging often require cutting someone open or making them swallow huge tubes with cameras on them. But what if could get the same results with methods that are less expensive, invasive and time-consuming?

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) led by professor Dina Katabi are working on exactly that with ReMix, a system that they describe as an “in-body GPS.” ReMix can pinpoint the location of ingestible implants inside the body using low-power wireless signals. In animal tests the team demonstrated that they can track implants with centimeter-level accuracy, and said that one day similar implants could be used to deliver drugs to specific regions in the body.

To test ReMix, Katabi’s group first implanted a small marker in animal tissues. To track its movement, they used a wireless device that reflects radio signals at the patient, and a special algorithm to pinpoint the exact location of the marker. The team used a wireless technology that they’ve previously demonstrated to detect heart rate, breathing and movement.

Interestingly, the marker inside the body does not need to transmit any wireless signal. It simply reflects the signal transmitted by a device outside the body, without needing a battery or any other external source of energy.

A key challenge in using wireless signals in this way is the many competing reflections that bounce off a person’s body. In fact, the signals that reflect off a person’s skin are actually 100 million times more powerful than the signals of the metal marker itself.

To overcome this, the team designed an approach that essentially separates the interfering skin signals from the ones they’re trying to measure. They did this using a small semiconductor device called a “diode” that can mix signals together so that the team can then filter out the skin-related signals. For example, if the skin reflects at frequencies of F1 and F2, the diode creates new combinations of those frequencies such as F1-F2 and F1+F2. When all of the signals reflect back to the system, the system only picks up the combined frequencies , thereby filtering out the original frequencies that came from the patient’s skin.

“The ability to continuously sense inside the human body has largely been a distant dream,” says Romit Roy Choudhury, a professor of electrical engineering and computer science at the University of Illinois, who was not involved in the research. “One of the roadblocks has been wireless communication to a device and its continuous localization. ReMix makes a leap in this direction by showing that the wireless component of implantable devices may no longer be the bottleneck.”

One potential application for ReMix is in proton therapy, a type of cancer treatment that involves bombarding tumors with beams of magnet-controlled protons. The approach allows doctors to prescribe higher doses of radiation, but requires a very high degree of precision, which means that it’s usually limited to only certain cancers.

Its success hinges on something that’s actually quite unreliable: a tumor staying exactly where it is during the radiation process. If a tumor moves, then healthy areas could be exposed to the radiation. But with a small marker like ReMix’s, doctors could better determine the location of a tumor in real-time, and be able to either pause the treatment or steer the beam into the right position to deal with the movement. (To be clear, ReMix is not yet accurate enough to be used in clinical settings – Katabi says a margin of error closer to a couple of millimeters would be necessary for actual implementation.)

Looking ahead

There are still many challenges ahead for improving ReMix. The team next hopes to combine the wireless data with medical information like MRI scans to further improve the system’s accuracy. In addition, the team will continue to reassess the algorithm and the various trade-offs needed to account for the complexity of different peoples’ bodies.

“We want a model that’s technically feasible, while still complex enough to accurately represent the human body,” says PhD student Deepak Vasisht, lead author on the new paper. “If we want to use this technology on actual cancer patients one day, it will have to come from better modeling a person’s physical structure.”

ReMix was developed in collaboration with researchers from Massachusetts General Hospital (MGH). The team says that such systems could help enable more widespread adoption of proton therapy centers, of which there are only about 100 globally.

“One reason that [proton therapy] is so expensive is because of the cost of installing the hardware,” says Vasisht. “If these systems can encourage more applications of the technology, there will be more demand, which will mean more therapy centers and lower prices for patients.”

Source:

http://news.mit.edu/2018/gps-inside-your-body-0820

Tagged with:

About author

Related Articles