Breaking News
December 13, 2018 - International investigators fight against the negative campaign on benzodiazepines
December 13, 2018 - Targeting biochemical pathway may lead to new therapies for alleviating symptoms of anxiety disorders
December 13, 2018 - FDA Approves Tolsura (SUBA®-itraconazole capsules) for the Treatment of Certain Fungal Infections
December 13, 2018 - Are scientists studying the wrong kind of mice?
December 13, 2018 - Computer memory: A scientific team builds a virtual model of a key brain region
December 13, 2018 - Visual inspection alone is insufficient to diagnose skin cancer
December 13, 2018 - Paternal grandfather’s access to food associated with grandson’s mortality risk
December 13, 2018 - Our brain senses angry voices in a flash, study shows
December 13, 2018 - PM2.5 Exposure Linked to Asthma Rescue Medication Use
December 13, 2018 - Can’t exercise? A hot bath may help improve inflammation, metabolism, study suggests
December 13, 2018 - Can artificial intelligence help doctors with the human side of medicine?
December 13, 2018 - Virginia Tech and UC San Diego researchers team up to develop nonopioid drug for chronic pain
December 13, 2018 - NIH offers support for HIV care and prevention research in the southern United States
December 12, 2018 - Activating brain region could revive the urge to socialize among opioid addicts
December 12, 2018 - Relationship impairment appears to interfere with seeking mental health treatment in men
December 12, 2018 - Sleep, Don’t Cram, Before Finals for Better Grades
December 12, 2018 - Effective treatments for urticarial vasculitis
December 12, 2018 - Gun violence is a public health issue: One physician’s story
December 12, 2018 - The Science of Healthy Aging
December 12, 2018 - Yes to yoghurt and cheese: New improved Mediterranean diet
December 12, 2018 - Researchers uncover a number of previously unknown insecticide resistance mechanisms
December 12, 2018 - Regulating the immune system’s ‘regulator’
December 12, 2018 - In breaking bad news, the comfort of silence
December 12, 2018 - Study finds upward link between alcohol consumption and physical activity in college students
December 12, 2018 - FDA issues warning letter to Zhejiang Huahai Pharmaceutical involved in valsartan recall
December 12, 2018 - Weight history at ages 20 and 40 could help predict patients’ future risk of heart failure
December 12, 2018 - Presence of antiphospholipid antibodies tied to first-time MI
December 12, 2018 - DNA analysis finds that stethoscopes are teaming with bacteria
December 12, 2018 - New study could help inform research on preventing falls
December 12, 2018 - Women and men with heart attack symptoms receive different care from EMS
December 12, 2018 - Disrupted biological clock can contribute to onset of diseases, USC study shows
December 12, 2018 - New publications generate controversy over the value of reducing salt consumption in populations
December 12, 2018 - New data from TAILORx trial confirms lack of chemo benefit regardless of race or ethnicity
December 12, 2018 - Specific class of biomarkers can accurately indicate the severity of cancer
December 12, 2018 - Meds Taken Do Not Vary With ADL Impairment in Heart Failure
December 12, 2018 - Long-term study shows that HIV-2 is deadlier than previously thought
December 12, 2018 - People living near oil and gas wells show early signs of cardiovascular disease
December 12, 2018 - IONTAS founder and pioneer in phage display technology attends Nobel Prize Award Ceremony
December 12, 2018 - People who eat red meat have high levels of chemical associated with heart disease, study finds
December 12, 2018 - New method uses water molecules to unlock neurons’ secrets
December 12, 2018 - Genetics study offers hope for new acne treatment
December 12, 2018 - New computer model predicts prostate cancer progression
December 12, 2018 - Nobel Laureates lecture about immune checkpoint therapy for cancer treatment
December 12, 2018 - More Illnesses From Tainted Romaine Lettuce Reported
December 12, 2018 - Aspirin could reduce HIV infections in women
December 12, 2018 - The EORTC Brain Tumor Group and Protagen AG collaborate to study immuno-competence of long-term glioblastoma survivors
December 12, 2018 - Insights into magnetotactic bacteria could guide development of biological nanorobots
December 12, 2018 - Sacrificial immune cells alert body to infection
December 12, 2018 - Low-salt diet may be more beneficial for females than males
December 12, 2018 - Major soil organic matter compound battles chronic wasting disease
December 12, 2018 - Findings may open up new ways to treat dwarfism and other ER-stress-related conditions
December 12, 2018 - New computational model provides clearer picture of shape-changing cells’ structure and mechanics
December 12, 2018 - 10 Facts on Patient Safety
December 12, 2018 - Poorest dying nearly 10 years younger than the rich in ‘deeply worrying’ trend for UK
December 12, 2018 - Innovative care model for children with ASD reduces use of behavioral drugs in ED
December 12, 2018 - Spending time in and around Hong Kong’s waters linked to better health and wellbeing
December 12, 2018 - Simple measures to prevent weight gain over Christmas
December 12, 2018 - Research advances offer hope for patient-tailored AML treatment
December 12, 2018 - Researchers discover a ‘blind spot’ in atomic force microscopy
December 12, 2018 - Sprayable gel could help prevent recurrences of cancer after surgery
December 12, 2018 - SLU researchers explore how fetal exposure to inflammation can alter immunity in newborns
December 12, 2018 - How do patients want to discuss symptoms with clinicians?
December 12, 2018 - Zinc chelation may be able to deliver drug to insulin-producing cells
December 12, 2018 - Brigham researchers develop automated, low-cost tool to predict a woman’s ovulation
December 12, 2018 - Some people with Type 2 diabetes may be testing their blood sugar more often than needed
December 12, 2018 - Slow-growing type of glioma may be vulnerable to immunotherapy, suggests study
December 12, 2018 - Study provides new information regarding microRNA function in cellular homeostasis of zebrafish
December 12, 2018 - Study provides new understanding of mysterious ‘hereditary swelling’
December 12, 2018 - Researchers shed new light on how to combat Shiga and ricin toxins
December 12, 2018 - Pregnant Women Commonly Refuse Vaccines
December 12, 2018 - Drug treatment could offer new hope for some patients with brain bleeding
December 12, 2018 - Health care financial burden of animal-related injuries is growing, study says
December 12, 2018 - Macrophage cells could help repair the heart following a heart attack, study finds
December 12, 2018 - Researchers develop new system for efficiently producing human norovirus
December 12, 2018 - New artificial intelligence-based system to differentiate between different types of cancer cells
December 11, 2018 - Brazilian professors propose guidelines for therapeutic use of melatonin
December 11, 2018 - Healthy Lifestyle Lowers Odds of Breast Cancer’s Return
December 11, 2018 - New research identifies two genes linked to serious congenital heart condition
December 11, 2018 - NIH Director talks science, STEM careers with preteens
December 11, 2018 - Disabling a Cellular Antivirus System Could Improve Gene Therapy
Discovery of unusual biosynthetic pathways could aid in the search for new natural products

Discovery of unusual biosynthetic pathways could aid in the search for new natural products

image_pdfDownload PDFimage_print

Bacteria are master engineers of small, biologically useful molecules. A new study in Nature Communications has revealed one of the tricks of this microbial trade: synthesizing and then later inserting a nitrogen-nitrogen bond, like a prefabricated part, into a larger molecule.

The discovery was made by a collaborative group of chemists at the University of Illinois and Harvard University. Together, they confirmed that two otherwise unrelated, bacterially-produced compounds shared an unusual set of steps in their biosynthetic pathways. Deciphering this type of biochemical process will aid in the search for other useful biological compounds.

“It’s a molecular handle or genetic handle if you wish to now go after other new molecules that people haven’t found before,” said Wilfred van der Donk, Richard E. Heckert Endowed Chair in Chemistry and Investigator of the Howard Hughes Medical Institute. “So we’re pretty excited both about what’s in the paper and also what it allows us to do going forward.”

Natural products, substances produced by living things, have provided us with antibiotics, antifungals, cancer therapies, and other important pharmaceutical and industrial compounds; continued exploration of the diverse chemical world of microbes is one of our best hopes for future drug discovery. A major focus of van der Donk’s research is the quest to identify new natural products.

Van der Donk shares that goal with a collaborative research team within the Carl R. Woese Institute for Genomic Biology (IGB), of which he is a member. The Mining Microbial Genomes research team aims to accelerate the natural product hunt using the power of next-generation genomic technologies. The tools that bacteria and other microbes use to make natural products are enzymes, specialized proteins encoded by genes. The team’s long-term research goal is to learn to read through bacterial genomes and, based on the genes each species possesses, predict what compounds they are able to make.

The team is especially interested in a class of molecules called phosphonates that has already yielded multiple useful compounds. At the outset of the present study, they wanted to understand what gene products enable a cell to form a key feature of a particular phosphonate called fosfazinomycin, a compound with antifungal properties: a chemical bond between two nitrogen atoms. Compounds with reactive nitrogen-nitrogen bonds readily react with other molecules such as DNA and proteins and as such may contribute to antimicrobial or anti-cancer activity.

“We were looking for fosfazinomycin as a group for probably a decade, because of the very unusual structure, but we didn’t know which genes” provided the enzymes to synthesize it, van der Donk explained. “We decided okay, let’s figure out how nature makes this nitrogen-nitrogen bond.”

After the group began work on the project, two publications by researchers focused on other natural products described a process of nitrogen-nitrogen bond formation in which one nitrogen atom is built into the molecule, and another is later attached–the organism is building the molecule piece by piece, like a child with a basic pack of Lego bricks.

Van der Donk’s group discovered with surprise that their molecule’s nitrogen-nitrogen bond was not being formed this way. Instead, the bacteria they studied were creating nitrogen-nitrogen bonds as part of a much smaller molecule, like a specialty Lego part, and later installing that part into the larger molecule that would become fosfazinomycin.

“We realized as we continued working that in our system, it’s done very differently,” van der Donk said. “It looked like in our case as if nature was making this nitrogen-nitrogen bond containing molecule as a prepackaged molecular entity that then later on was dumped into an existing biosynthetic pathway.”

The research project took another serendipitous turn when graduate student and co-first author Kwo-Kwang (Abraham) Wang presented the preliminary results at a conference. He was approached by Harvard chemistry graduate student Tai Ng, who along with his laboratory group led by Professor Emily Balskus was studying a natural product and promising anti-cancer agent called kinamycin. Kinamycin contains a nitrogen-nitrogen bond, and Ng’s research suggested that it also shares the prefabrication step suspected for fosfazinomycin.

“We had noticed that their molecule [is synthesized using] the same genes, but we didn’t really know how that fit in either, because they are making a completely different nitrogen-nitrogen bond containing structure that doesn’t look anything like our molecule,” van der Donk said. The two groups began to work together, coordinating experiments in which labeled molecules were fed to bacteria able to synthesize each of the two natural products, to see what intermediate molecular structures could be seamlessly introduced into the natural biosynthesis pathway within the cell.

“We would make these labeled compounds, give them to the producing organism, isolate the final product, for the Harvard group kinamycin and for us fosfazinomycin, and see whether the nitrogen-nitrogen moiety of the molecules that we were feeding to these organisms was installed into the final product,” van der Donk said. “We did that for four different compounds and every time the answer was yes, yes, yes, yes.”

Finding this improbable commonality in the way two dissimilar molecules are produced increased the researchers’ confidence in the functional roles of the genes involved. They now have a new genomic signature to add to their lexicon, something they can scan for in other bacterial genomes as they continue the search for useful natural products.

“We need to learn more about how known natural products are made. This is a great example; now that we know, we can use that knowledge. Before that, it was just a whole bunch of genes and we didn’t really know what to do with them,” van der Donk said. “By going after unknown gene clusters [we hope to be able to] see immediately from the gene cluster, this has to be a new molecule . . . could that molecule be the next antibiotic or the next anti-tumor drug?”

Source:

https://www.igb.illinois.edu/article/unusual-biosynthetic-pathway-offers-key-future-natural-product-discovery

Tagged with:

About author

Related Articles