Breaking News
April 21, 2019 - More TV, Tablets, More Attention Issues at Age 5
April 21, 2019 - Drug reduces risk of kidney failure in people with diabetes, study finds
April 21, 2019 - New research identifies novel link between antibiotic resistance and climate change
April 21, 2019 - Simple intervention can provide lasting protection for teens against junk food marketing
April 21, 2019 - The protein p38-gamma identified as a new therapeutic target in liver cancer
April 21, 2019 - Novel system enables researchers to study bacteria within mini-tissues in a dish
April 21, 2019 - Discovery of oral cancer biomarkers could save thousands of lives
April 21, 2019 - Geneva Exhibition committee gives gold medals to two medications developed by Kazan
April 21, 2019 - Scientists aim to minimize or eliminate hair loss during cancer treatment
April 21, 2019 - WiFi interacts with signaling pathways in the human brain
April 21, 2019 - Stroke Hospitalizations Down in Black, White Medicare Enrollees
April 21, 2019 - First common risk genes discovered for autism
April 21, 2019 - Researchers map auditory sensory system of the mouse brain
April 21, 2019 - Scientists Bring Pig’s Brain, Dead 4 Hours, Back to ‘Cellular Activity’
April 21, 2019 - Virtual reality a promising tool for reducing fears and phobia in autism
April 21, 2019 - New analysis lists out opportunities for U.S. medical schools to advance population health
April 21, 2019 - More sleep may help teens with ADHD focus and organize
April 21, 2019 - Breakthrough antibody treatment suppresses HIV without antivirals
April 21, 2019 - AveXis Data Reinforce Effectiveness of Zolgensma in Treating Spinal Muscular Atrophy (SMA) Type 1
April 21, 2019 - Is your hand pain arthritis, carpal tunnel or something else?
April 21, 2019 - Measles outbreaks may become more frequent if vaccination rates continue to decline
April 21, 2019 - Researchers succeed in accelerating process of creating 3D images
April 21, 2019 - Tiny worm mimics key genetic risk for Alzheimer’s
April 21, 2019 - Angry dreams explained by brain waves
April 20, 2019 - Parenteral Antimicrobial Tx at Home Burdens Children’s Caregivers
April 20, 2019 - Diabetes treatment may keep dementia, Alzheimer’s at bay
April 20, 2019 - New bandage-like biosensor collects and analyzes sweat
April 20, 2019 - A comprehensive, centralized database of bovine milk compounds
April 20, 2019 - Two new epigenetic regulators maintain self-renewal of embryonic stem cells
April 20, 2019 - New Evidence That Veggies Beat Steak for Heart Health
April 20, 2019 - Study reveals genes associated with heavy drinking and alcoholism
April 20, 2019 - Texas A&M AgriLife becomes the newest member of NutriRECS international consortium
April 20, 2019 - In most states, insurance won’t cover addiction treatments
April 20, 2019 - Computer-based memory games may be beneficial for individuals with fragile X syndrome
April 20, 2019 - Timing of food intake influences molecular clock in the liver of mice
April 20, 2019 - Precise decoding of breast cancer cells paves way for new treatment option
April 20, 2019 - Scientists use 3D imaging to help model complex processes performed by placenta
April 20, 2019 - MediciNova Announces Plans to Move Forward with a Phase 3 Trial of MN-166 (ibudilast) in ALS
April 20, 2019 - Genetic variants that protect against obesity could aid new weight loss medicines
April 20, 2019 - New technology developed for microscopic imaging in living organisms
April 20, 2019 - when quitting cigarettes, consider using more nicotine, not less
April 20, 2019 - Key proteins can block Listeria without triggering the death of host cells
April 20, 2019 - Researchers create a working model of cerebral tract to study brain function
April 20, 2019 - New study shows that microbes can help break toxic chemical in dust
April 20, 2019 - Scientists use NIR light and injected DNA nanodevice to guide stem cells to injury
April 20, 2019 - Microbial Features ID’d for Pediatric Irritable Bowel Syndrome
April 20, 2019 - Study reveals patterns of drug intoxication deaths, organ donors across the US
April 20, 2019 - Scientists deploy CRISPR gene-editing tool to engineer multiple edits
April 20, 2019 - AHA News: Here’s How Middle-Aged People — Especially Women — Can Avoid a Heart Attack
April 20, 2019 - Charcot foot: MedlinePlus Medical Encyclopedia
April 20, 2019 - France to ban popular breast implants over cancer risk: media
April 20, 2019 - Researchers explore whether time of day can affect the body’s response to physical exertion
April 20, 2019 - CPAP brings longer life for obese people with sleep apnea: Study
April 20, 2019 - New discovery transforms conventional microfluidics into open-space microfluidics
April 20, 2019 - An accurate estimation of the overall cost of bacterial resistance in French hospitals during 2015 and 2016
April 20, 2019 - ‘PRO-cision Medicine’ approach helps personalize care for patients with cancer
April 19, 2019 - TG Therapeutics Receives Orphan Drug Designation for Umbralisib from the U.S. Food and Drug Administration for the Treatment of Marginal Zone Lymphoma
April 19, 2019 - Screen time—even before bed—has little impact on teen well-being: study
April 19, 2019 - Cytosurge’s first FluidFM User Conference
April 19, 2019 - New study finds that previously described differences among endoscopists are not true
April 19, 2019 - Study compares effectiveness and cost of gene therapy and HSCT in major beta-thalassemia
April 19, 2019 - Scientific breakthrough provides new hope for people living with multiple sclerosis
April 19, 2019 - New Virtual Reality Therapy game could offer relief for patients with chronic pain, mobility issues
April 19, 2019 - Emergency medicine doctors find better way to treat severe epileptic seizures in children
April 19, 2019 - MedlinePlus: Cholesterol Good and Bad
April 19, 2019 - For busy medical students, two-hour meditation study may be as beneficial as longer course
April 19, 2019 - Music therapy helps young patients feel better
April 19, 2019 - Molecular target UNC45A is essential for cancer cell proliferation and tumor growth
April 19, 2019 - Crackling and wheezing could be the sounds of a progressing lung disease
April 19, 2019 - Key research takeaways from ECCMID 2019
April 19, 2019 - AI Can Identify Model of Cardiac Rhythm Device From Chest X-Ray
April 19, 2019 - New way to combat childhood anxiety: treat the parents
April 19, 2019 - Women getting C-sections best judge of own pain medication needs | News Center
April 19, 2019 - Light-intensity physical activity associated with healthy brain aging
April 19, 2019 - Immune responses that prevent fungal infections may eliminate Trichinella spiralis
April 19, 2019 - Exercising in the morning, rather than at night, may yield better results, shows study
April 19, 2019 - Why eating ‘right’ could cause you to stray from your diet
April 19, 2019 - Health Tip: Antidepressant Precautions – Drugs.com MedNews
April 19, 2019 - Bigger portions lead to preschoolers eating more over time
April 19, 2019 - Specific strains of Staphylococcus aureus linked to wounds that do not heal
Discovery of unusual biosynthetic pathways could aid in the search for new natural products

Discovery of unusual biosynthetic pathways could aid in the search for new natural products

image_pdfDownload PDFimage_print

Bacteria are master engineers of small, biologically useful molecules. A new study in Nature Communications has revealed one of the tricks of this microbial trade: synthesizing and then later inserting a nitrogen-nitrogen bond, like a prefabricated part, into a larger molecule.

The discovery was made by a collaborative group of chemists at the University of Illinois and Harvard University. Together, they confirmed that two otherwise unrelated, bacterially-produced compounds shared an unusual set of steps in their biosynthetic pathways. Deciphering this type of biochemical process will aid in the search for other useful biological compounds.

“It’s a molecular handle or genetic handle if you wish to now go after other new molecules that people haven’t found before,” said Wilfred van der Donk, Richard E. Heckert Endowed Chair in Chemistry and Investigator of the Howard Hughes Medical Institute. “So we’re pretty excited both about what’s in the paper and also what it allows us to do going forward.”

Natural products, substances produced by living things, have provided us with antibiotics, antifungals, cancer therapies, and other important pharmaceutical and industrial compounds; continued exploration of the diverse chemical world of microbes is one of our best hopes for future drug discovery. A major focus of van der Donk’s research is the quest to identify new natural products.

Van der Donk shares that goal with a collaborative research team within the Carl R. Woese Institute for Genomic Biology (IGB), of which he is a member. The Mining Microbial Genomes research team aims to accelerate the natural product hunt using the power of next-generation genomic technologies. The tools that bacteria and other microbes use to make natural products are enzymes, specialized proteins encoded by genes. The team’s long-term research goal is to learn to read through bacterial genomes and, based on the genes each species possesses, predict what compounds they are able to make.

The team is especially interested in a class of molecules called phosphonates that has already yielded multiple useful compounds. At the outset of the present study, they wanted to understand what gene products enable a cell to form a key feature of a particular phosphonate called fosfazinomycin, a compound with antifungal properties: a chemical bond between two nitrogen atoms. Compounds with reactive nitrogen-nitrogen bonds readily react with other molecules such as DNA and proteins and as such may contribute to antimicrobial or anti-cancer activity.

“We were looking for fosfazinomycin as a group for probably a decade, because of the very unusual structure, but we didn’t know which genes” provided the enzymes to synthesize it, van der Donk explained. “We decided okay, let’s figure out how nature makes this nitrogen-nitrogen bond.”

After the group began work on the project, two publications by researchers focused on other natural products described a process of nitrogen-nitrogen bond formation in which one nitrogen atom is built into the molecule, and another is later attached–the organism is building the molecule piece by piece, like a child with a basic pack of Lego bricks.

Van der Donk’s group discovered with surprise that their molecule’s nitrogen-nitrogen bond was not being formed this way. Instead, the bacteria they studied were creating nitrogen-nitrogen bonds as part of a much smaller molecule, like a specialty Lego part, and later installing that part into the larger molecule that would become fosfazinomycin.

“We realized as we continued working that in our system, it’s done very differently,” van der Donk said. “It looked like in our case as if nature was making this nitrogen-nitrogen bond containing molecule as a prepackaged molecular entity that then later on was dumped into an existing biosynthetic pathway.”

The research project took another serendipitous turn when graduate student and co-first author Kwo-Kwang (Abraham) Wang presented the preliminary results at a conference. He was approached by Harvard chemistry graduate student Tai Ng, who along with his laboratory group led by Professor Emily Balskus was studying a natural product and promising anti-cancer agent called kinamycin. Kinamycin contains a nitrogen-nitrogen bond, and Ng’s research suggested that it also shares the prefabrication step suspected for fosfazinomycin.

“We had noticed that their molecule [is synthesized using] the same genes, but we didn’t really know how that fit in either, because they are making a completely different nitrogen-nitrogen bond containing structure that doesn’t look anything like our molecule,” van der Donk said. The two groups began to work together, coordinating experiments in which labeled molecules were fed to bacteria able to synthesize each of the two natural products, to see what intermediate molecular structures could be seamlessly introduced into the natural biosynthesis pathway within the cell.

“We would make these labeled compounds, give them to the producing organism, isolate the final product, for the Harvard group kinamycin and for us fosfazinomycin, and see whether the nitrogen-nitrogen moiety of the molecules that we were feeding to these organisms was installed into the final product,” van der Donk said. “We did that for four different compounds and every time the answer was yes, yes, yes, yes.”

Finding this improbable commonality in the way two dissimilar molecules are produced increased the researchers’ confidence in the functional roles of the genes involved. They now have a new genomic signature to add to their lexicon, something they can scan for in other bacterial genomes as they continue the search for useful natural products.

“We need to learn more about how known natural products are made. This is a great example; now that we know, we can use that knowledge. Before that, it was just a whole bunch of genes and we didn’t really know what to do with them,” van der Donk said. “By going after unknown gene clusters [we hope to be able to] see immediately from the gene cluster, this has to be a new molecule . . . could that molecule be the next antibiotic or the next anti-tumor drug?”

Source:

https://www.igb.illinois.edu/article/unusual-biosynthetic-pathway-offers-key-future-natural-product-discovery

Tagged with:

About author

Related Articles