Breaking News
October 19, 2018 - Could we prevent Alzheimer’s disease by treating herpes?
October 19, 2018 - Nurse-led care can be more successful in managing gout
October 19, 2018 - Trump administration, pharma exchange verbal volleys on drug-price transparency
October 19, 2018 - Duke researchers find way to detect blood doping in athletes
October 19, 2018 - Many primary care doctors are still prescribing sedative drugs for older adults
October 19, 2018 - Finger length can predict sexuality in women say researchers
October 19, 2018 - Study finds differences in side-effects experienced by male and female OG cancer patients
October 19, 2018 - Few Seniors Who Self-Harm Referred for Mental Health Care
October 19, 2018 - Don’t sweat the sweet stuff
October 19, 2018 - URMC researchers discover new approach to deliver therapeutics to the brain
October 19, 2018 - Middlemen suppliers can increase drug prices and hospital bills, say Johns Hopkins researchers
October 19, 2018 - $11 million NIH grant for Clemson University helps launch new center for musculoskeletal research
October 19, 2018 - A new approach identified to control Zika virus, dengue fever
October 19, 2018 - Head Blows Without Concussion May Not Damage Brain, Study Claims
October 19, 2018 - US opioid use not declined, despite focus on abuse and awareness of risk
October 19, 2018 - Next-generation RNA sequencing technology sheds new light on human mitochondrial diseases
October 19, 2018 - UT Southwestern biochemist receives 2019 Breakthrough Prize in Life Sciences for innate immunity discovery
October 19, 2018 - The immune system also plays a key role in day-to-day function of healthy organs
October 19, 2018 - New tool may reveal how the brain structure impacts brain activity, human behavior
October 19, 2018 - Trump Administration announces ‘Winning on Reducing Food Waste’ initiative
October 19, 2018 - For-profit nursing home residents more likely to experience health issues caused by substandard care
October 19, 2018 - Incidence of stroke has risen steadily among marijuana users, show studies
October 19, 2018 - Conceptual framework proposed to examine role of exercise in multiple sclerosis
October 19, 2018 - Near infrared spectroscopy technique for accurate evaluation of chondral injuries
October 19, 2018 - Scientists receive $5.1 million grant to develop stem cell-based therapy for blinding retinal conditions
October 19, 2018 - Shorter physician encounters associated with antibiotic prescribing
October 19, 2018 - In the Spotlight: Enjoying research and exploring opportunities
October 19, 2018 - Physical activity lowers cardiovascular mortality risk in frail older adults
October 19, 2018 - New imaging tool helps visualize how sound-induced vibrations travel through the ear
October 19, 2018 - Key insights into the application, production of bioactive materials
October 19, 2018 - New urea sorbent could speed up the development of wearable artificial kidney
October 19, 2018 - Intensive care patients’ muscles less able to use fats for energy
October 19, 2018 - FDA Advisory Committee Recommends Approval of Dsuvia for the Treatment of Moderate-to-Severe Acute Pain
October 19, 2018 - 48,XXXY syndrome – Genetics Home Reference
October 19, 2018 - Physical exercise improves the elimination of toxic proteins from muscles
October 19, 2018 - How a new system improved wait times for Stanford kidney transplant patients
October 19, 2018 - Nutrition has bigger positive impact on bone mass and strength than exercise
October 19, 2018 - Study finds lack of progress in media representation of nurses over last 20 years
October 19, 2018 - Many people have trouble understanding differences between OCD and OCPD
October 19, 2018 - New family planning app found to be as effective as modern methods
October 19, 2018 - Gastric Banding, Metformin Similar for Improving Glycemia
October 19, 2018 - Physiologist publishes findings on the role of the protein titin in muscle contraction
October 19, 2018 - What digital health companies need to do to succeed
October 19, 2018 - N. Carolina Sees Alarming Spike in Heart Infections Among Opioid Users
October 19, 2018 - Video monitoring of TB therapy works well in urban and rural areas
October 19, 2018 - Determining acid-neutralizing capacity for OTC antacids
October 19, 2018 - Males who spend more time taking care of kids have greater reproductive success
October 18, 2018 - Study to explore bioethics of brain organoids
October 18, 2018 - Environmental conditions may drive development of multiple sclerosis
October 18, 2018 - Genetically modifying zebrafish provides more accurate disease models
October 18, 2018 - Purdue Pharma, Eisai announce positive topline results from Phase 3 study of lemborexant
October 18, 2018 - 5 Strength-Training Mistakes to Avoid
October 18, 2018 - Immune system’s balancing act keeps bowel disease in check
October 18, 2018 - Anti-inflammatory drug effective for treating lymphedema symptoms | News Center
October 18, 2018 - Keeping Your Voice Young
October 18, 2018 - One-time universal screening recommended to tackle increase in hepatitis C
October 18, 2018 - Researchers to develop new stem cell-based strategies for treating vision disorders
October 18, 2018 - Detecting epigenetic signature may help people stay ahead of inflammatory bowel disease
October 18, 2018 - Understanding AFib: Slowing down the dancing heart
October 18, 2018 - Using NMR to Reduce Fraud
October 18, 2018 - New automated model identifies dense breast tissue in mammograms
October 18, 2018 - Mysterious polio-like illness baffles medical experts while frightening parents
October 18, 2018 - Cases of Acute Flaccid Myelitis on the rise across U.S.
October 18, 2018 - Dietary fiber reduces brain inflammation during aging
October 18, 2018 - New tool could help prioritize recovery efforts for the poorest hit by natural disasters
October 18, 2018 - Hundreds of dietary supplements shown to contain unapproved drugs
October 18, 2018 - Active Pharmaceuticals ID’d in >700 Dietary Supplements
October 18, 2018 - Cell death protein also damps inflammation
October 18, 2018 - AI pathology diagnostic tool developed using deep learning technology from Olympus
October 18, 2018 - Health Highlights: Oct. 15, 2018
October 18, 2018 - Largest study of ‘post-treatment controllers’ reveals clues about HIV remission
October 18, 2018 - Bad Blood in Silicon Valley: A conversation with John Carreyrou
October 18, 2018 - ANTRUK’s Annual Lecture sends out message on shortage of funds for antibiotic research
October 18, 2018 - NAM special publication outlines steps to ensure interoperability of health care systems
October 18, 2018 - Novel method uses just a drop of blood to monitor effect of lung cancer therapy
October 18, 2018 - New blood test could spare cancer patients from unnecessary chemotherapy
October 18, 2018 - Training young researchers to work with data volumes arising in the health sector
October 18, 2018 - New Metrohm IC method is reliable and convenient to use for zinc oxide assay
October 18, 2018 - Global AIDS, TB fight needs more money: health fund
October 18, 2018 - Understanding the forces that cause sports concussions
Neural signal that urges to eat overpowers the one that says to stop

Neural signal that urges to eat overpowers the one that says to stop

image_pdfDownload PDFimage_print

Almost everyone knows the feeling. You’re at a restaurant or a holiday meal, and your stomach is telling you it’s full, so logically you know you should stop eating.

But what you’re eating tastes so good, or your friends and family are still eating, or you don’t get this treat very often. So you keep going.

A new study explores the mystery of why this happens, at the most basic level in the brain. It shows that two tiny clusters of cells battle for control of feeding behavior — and the one that drives eating overpowers the one that says to stop.

It also shows that the brain’s own natural opioid system gets involved – and that blocking it with the drug naloxone can stop over-eating.

The researchers studied mice, not over-eating humans. But they do note that the findings could help inform the fight against the global obesity epidemic.

The team, from the University of Michigan Molecular and Behavioral Neuroscience Institute, published their work in the Proceedings of the National Academy of Science.

The two groups of brain cells they looked at, called POMC and AgRP, are next-door neighbors in a deep brain region called the arcuate nucleus, or Arc, within a larger region called the hypothalamus, which is a master regulator of motivated behaviors.

Neuroscientist and U-M Department of Psychiatry professor Huda Akil, Ph.D., led the research team. She says the discovery involved a strong dose of serendipity.

“We used a transgenic approach to specifically address the POMC neurons for optogenetic stimulation, and we expected to see a decrease in appetite. Instead, we saw a really remarkable effect,” she says. “The animals ate like crazy; during the half hour after stimulation, they ate a full day’s supply of food.”

A tale of two genes

Previous research, including work done in several U-M laboratories, showed that the Arc region, and specifically POMC and AgRP neurons, play key roles in feeding behavior.

The gene called POMC (short for pro-opiomelanocortin) has multiple functions: it encodes a stress hormone called ACTH, a natural opioid called beta-endoprhin, and several other molecules called melanocortins.

The first mammalian gene to be cloned, it was also the first gene that scientists visualized in the brain of a mammal using a technique called in situ hybridization – work that was led by Stan Watson, M.D., Ph.D., who also co-authored the new paper. Another U-M researcher, Roger Cone, Ph.D., first cloned the receptors for POMC-produced melanocortins, and demonstrated their role in food intake, energy regulation and obesity.

POMC’s products get opposition from products of the AgRP gene, whose name is short for Agouti-Gene-Related Peptide. Watson also mapped the location of AgRP cells in the brain, and Cone’s team determined their role in feeding and obesity.

In general, POMC acts like a brake on feeding when it gets certain signals from the body, and AgRP acts like an accelerator pedal, especially when food is scarce or it’s been some time since a meal.

But the new study shows for the first time how their activity relates to one another, thanks to a technique called optogenetics. By focusing on unique molecular features of a particular group of neurons, it makes it possible for scientists to target, or address, those cells specifically and activate them selectively.

A hunt for answers

The serendipitous optogenetic finding about the over-eating mice set off a search for the reason why they overate, led by research scientist Qiang Wei, Ph.D., working with others in Akil’s lab.

The answer was that while they were optogenetically stimulating the POMC cells, they were also unintentionally stimulating a subset of AgRP cells nearby. The two types of cells originate from the same parent cells during embryonic development. That common heritage meant that the transgenic approach Akil and her colleagues used to address POMC captured not only the POMC neurons but also a segment of the AgRP neuronal system.

In other words, they had turned on both the brake and the gas pedal for eating. When both types of cell got activated, the “keep eating” signal from AgRP cells overpowered the “stop eating” signal from POMC cells. “When both are stimulated at once, AgRP steals the show,” says Akil.

Then the researchers used a different technique, addressing the cells with an injected virus rather than a transgene, to focus the optogenetic stimulation on just POMC neurons and ensure that AgRP neurons didn’t get activated.

They found that stimulating just POMC cells caused a significant decrease in eating – and were surprised at how rapidly it happened. Akil notes that past research had shown slow effects of POMC stimulation on eating – but in these previous experiments, mice had recently eaten, while the mice in the U-M study were slightly hungry.

The team also used a new method called CLARITY to visualize in 3-D the pathways that start from POMC and AgRP neurons. These pathways of neurons, once activated, can trigger either a sense of feeling full – called satiety — or the drive to eat. They stitched together images of activated neurons in a computer, to create 3-D videos that show the neurons’ reach.

Then, the researchers used a method called c-fos activation to dig deeper into the downstream effects of POMC and AgRP neuron activation – and showed that its effects spread throughout the brain, including in the cortex, which governs function like attention, perception, and memory.

Since POMC encodes a natural opioid (B-Endorphin), the authors asked whether activation of this system triggers the body’s own natural painkiller system, called the endogenous opioid system. They found that activation of POMC blocked pain, but that this was reversed by the opioid antagonist drug naloxone.

Interestingly, the activation of AgRP, which triggered feeding, also turned on the opioid system in the brain. “When we administered naloxone, which blocks opioid receptors, the feeding behavior stopped,” says Akil. “This suggests that the brain’s own endogenous opioid system may play a role in wanting to eat beyond what is needed.”

More than just metabolic signals

The involvement of the cortex and opioid systems lead Akil and her colleagues to think about how the results might relate to the human experience. Though mice and humans are very different, Akil speculates that the bombardment of our senses with sights and smells related to food, and the social interactions related to food, may be involved in encouraging overeating.

Perhaps, she says, these factors combine to trigger us to become interested in eating when we’re not even hungry, and the battle between the “stop” and “keep going” signals is lost.

“Our work shows that the signals of satiety – of having had enough food – are not powerful enough to work against the strong drive to eat, which has strong evolutionary value,” she says. She notes that other researchers are looking at opiate receptor blockers as potential diet aids, and that it’s also important to study the pathways that are activated by the products of both POMC and AgRP cells, as well as individual differences in all these systems.

Many studies in humans have looked at the metabolic aspects of the drive to eat, and overeat – for instance, the metabolic signals that travel between the body and brain in the form of peptides such as leptin and ghrelin. But Akil says there appears to be a strong neural system involved in overeating that results from perceptual, emotional and social triggers, and that is not receiving sufficient scientific attention.

“There’s a whole industry built on enticing you to eat, whether you need it or not, through visual cues, packaging, smells, emotional associations,” she says. “People get hungry just looking at them, and we need to study the neural signals involved in those attentional, perceptional mechanisms that drive us to eat.”

Source:

http://www.med.umich.edu/

Tagged with:

About author

Related Articles