Breaking News
December 19, 2018 - Protein may slow progression of emphysema, study finds
December 19, 2018 - Studying atrial fibrillation — and exploring new frontiers in precision health
December 19, 2018 - A New Way To Get College Students Through A Psychiatric Crisis — And Back To School
December 19, 2018 - Optum, UnitedHealthcare take action to help people affected by North Carolina winter storms
December 18, 2018 - Weight change in middle-aged, elderly Chinese Singaporeans related to increased risk of death
December 18, 2018 - Immune cells sacrifice themselves to protect us from invading bacteria
December 18, 2018 - Watching brain cells fire, with a twist of gravitational waves
December 18, 2018 - 2018 in Review
December 18, 2018 - Getting the Most Out of the CLARITY Technique
December 18, 2018 - NVF shoes provide a viable option for track and road racing
December 18, 2018 - CRISPR may restore effectiveness of chemotherapies used to treat lung cancer
December 18, 2018 - New app accurately measures and charts progression of skin wounds
December 18, 2018 - Persistent Discrimination ID’d Among Physician Mothers
December 18, 2018 - Cellphone technology developed to detect HIV
December 18, 2018 - A Stanford doctor hits the field with the 49ers — as their airway management physician
December 18, 2018 - The Rise of Anxiety Baking
December 18, 2018 - Just one night of sleep deprivation increases the urge to eat
December 18, 2018 - Study reveals mechanism behind failed remyelination in MS
December 18, 2018 - New genetic testing method increases the precision of biomarker analysis
December 18, 2018 - Simple technique to effectively treat underdiagnosed cause of debilitating chest pain
December 18, 2018 - Barbershop-based medical intervention can successfully lower blood pressure, new data shows
December 18, 2018 - Food labels have caused changes in consumers’ intake and industry’s use of key additives
December 18, 2018 - Sickest children could benefit from split liver transplants
December 18, 2018 - Scientists create patient-specific model to identify most effective treatment for appendix cancer
December 18, 2018 - New therapy for childhood blindness shows ‘very promising’ results
December 18, 2018 - Researchers discover promising new compound against Buruli ulcer
December 18, 2018 - Study finds significant use of traditional, complementary and alternative medicines in Sub-Saharan Africa
December 18, 2018 - California Farm Implicated in Outbreak of E. coli Tied to Romaine Lettuce
December 18, 2018 - Mobile health has power to transform HIV/AIDS nursing
December 18, 2018 - Celiac Vaccine in Clinical Trials at Columbia
December 18, 2018 - Research into mental health first aid prompts practical guidance and resources for workplace
December 18, 2018 - Researcher conducts study to investigate peripheral blood markers of Alzheimer’s disease
December 18, 2018 - Researchers identify link between mucus in the small airways and pulmonary fibrosis
December 18, 2018 - EU Commission’s Health Policy Platform to host EKHA program on transplantation
December 18, 2018 - Survivors of childhood Hodgkin lymphoma have high risk of developing solid tumors
December 18, 2018 - Small changes to cafeteria design can get kids to eat healthier, new assessment tool finds
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - Researchers identify potential target for new breast cancer treatments
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
December 18, 2018 - Russian scientists identify molecular ‘switch’ that could be target for treatment of allergic asthma
December 18, 2018 - Surgeons make more mistakes in the operating room during stressful moments, shows study
December 18, 2018 - Immune cells explode themselves to inform about the danger of invading bacteria
December 18, 2018 - Malnutrition in children with Crohn’s disease linked with increased risk of surgical complications
December 18, 2018 - FDA Approves Motegrity (prucalopride) for Adults with Chronic Idiopathic Constipation (CIC)
December 18, 2018 - The long and short of CDK12
December 18, 2018 - Hologic’s Cynosure division introduces TempSure Surgical RF technology in North America
December 18, 2018 - CMR Surgical partners with Nicholson Center to launch U.S.-based training program for Versius
December 18, 2018 - Findings reinforce guidelines for cautious use of antipsychotics in younger populations
December 18, 2018 - Study finds new strains of hepatitis C virus in sub-Saharan Africa
December 18, 2018 - New battery-free, implantable device aids weight loss
December 18, 2018 - Parental alcohol use disorder associated with offspring marital outcomes
December 18, 2018 - Novel Breast Imaging Technique Might Cut Unnecessary Biopsies
December 18, 2018 - What can a snowflake teach us about how cancer spreads in the body?
December 18, 2018 - Management of nausea and vomiting in pregnancy costs the NHS more than previously thought
December 18, 2018 - Green leafy vegetables may reduce risk of developing liver steatosis
December 18, 2018 - Veganism linked to nutrient deficiencies and malnutrition if not planned correctly
December 18, 2018 - Coming Soon: A Tiny Robot You Swallow to Help You Stay Healthy
December 18, 2018 - Modified malaria drug proven effective at inhibiting Ebola
December 18, 2018 - Study finds epigenetic differences in the brains of individuals with schizophrenia
December 18, 2018 - Fitness instructors’ motivational comments influence women’s body satisfaction
December 18, 2018 - Study focuses on modification of lipid nanoparticles for successful brain cell targeting
December 18, 2018 - New gut bacteria may be effective against obesity, metabolic and mental disorders
December 18, 2018 - New two-in-one powder aerosol to upgrade fight against deadly superbugs in lungs
December 18, 2018 - Biofilms feed with swirling flows
December 17, 2018 - Study identifies specific neurological changes related to traumatic brain injury
December 17, 2018 - New study confirms geographic bias in lung allocation for transplant
December 17, 2018 - Research focuses on optimization of solid lipid nanoparticle that encapsulates Vinorelbine bitartrate
December 17, 2018 - Carpal tunnel syndrome – Genetics Home Reference
December 17, 2018 - A novel insulin accelerant
December 17, 2018 - Tips for caring for patients with disabilities, from a mother and physician
December 17, 2018 - Menopause-related sexual, urinary problems tied to worse quality of life
December 17, 2018 - In-school nutrition programs among students limit increases in BMI, finds study
December 17, 2018 - Risk for Hospitalization for Heart Failure Greater With Diabetes
December 17, 2018 - Food assistance may help older adults adhere to diabetes meds
New genome editing tool used to heal genetic disease

New genome editing tool used to heal genetic disease

image_pdfDownload PDFimage_print

Parents of newborns may be familiar with the metabolic disorder phenylketonuria: in Switzerland, all newborn babies are screened for this genetic disease. If a baby is found to have phenylketonuria, it needs a special diet so that the amino acid phenylalanine does not accumulate in the body. Excess phenylalanine delays mental and motor development. If left untreated, the children may suffer massive mental disability.

The cause of this metabolic disorder is a mutation in a gene that provides the blueprint for the enzyme phenylalanine hydroxylase (Pah). This enzyme, which is produced by the cells of the liver, metabolizes phenylalanine. The disorder is referred to as “autosomal recessive”: the child develops the disease if it inherits one mutated gene from the mother and one from the father. There has been no cure for this disorder to date.

Enhancement of the CRISPR/Cas9 system

A team of researchers led by ETH professor Gerald Schwank has now taken advantage of a method to correct both mutated genes in the liver cells and thus heal the disease. They have succeeded, at least in mice.

With the help of a CRISPR/Cas9 system extended by one enzyme, the researchers changed the sequence of the DNA building blocks for the corresponding gene in adult mice. The liver cells were subsequently able to produce functioning Pah enzymes, and the mice were healed.

Let’s look at the details: The CRISPR/Cas9 system enhanced by the enzyme cytidine deaminase binds to the locus on the gene that needs to be corrected and locally opens both DNA strands. The deaminase converts the disease-causing DNA base pair C-G into T-A, which is the base pair that occurs at that spot in healthy individuals. This corrects the error in the DNA sequence of the Pah enzyme.

In traditional CRISPR/Cas editing, inducing a DNA double-stranded break is the central element of genome editing. The double strand is cut at a defined point, and the cell attempts to repair the cut using various mechanisms. If a matching DNA sequence is added to the cell from outside, it enables a specialized repair mechanism to precisely modify the specific genetic sequence.

The problem here is that most human cells primarily use other DNA repair mechanisms that produce additional undesired mutations.

More sparing genome editing

The researchers realized that the new genome editing tool is much more efficient than the traditional CRISPR/Cas9 method: up to 60 percent of all copies of the gene with errors in the mouse liver were corrected. This resulted in the concentration of phenylalanine falling to normal levels, and the animals no longer showing any signs of the disorder after being treated with the genome editing tool.

To transfer the genetic code for the new editing tool to the liver cells, the researchers implanted the required genes into adeno-associated viruses and injected them into the blood of the mice. The virus then infected the liver cells, thereby introducing the genes for the editing tool into the liver cell.

Healing other metabolic diseases

“This approach has great potential for application in humans”, says Gerald Schwank. However, this study is only a first proof of concept. Clinical studies in other animal models would have to follow in order to test the efficacy and safety of the new genome editing tool for application in humans.

Previous methods of genome editing have only limited success at correcting target mutations directly in animals. The correction rate in the liver of adult mice has previously been only a few percent, explains Schwank. “Here we’ve achieved several fold higher editing rates – nobody has managed that so far.”

Schwank considers the risks to be low. After applying the editing tool in the mouse model the researchers looked for non-target mutations, that is, on sites where there shouldn’t be mutations. But they didn’t find any. Schwank would like to examine this more closely in a follow-up study. &laquoThe human liver consists of several billion cells. In none of them we want to induce any mutations that could cause cancer», emphasizes Schwank. Testing is also needed to find out whether the adeno-associated virus used by the researchers as a vehicle for applying the editing tool gene causes any adverse effects.

Focus on further metabolic disorders

“The use of a base editor was the key to our success”, explains Schwank’s doctoral candidate and primary author of the study, Lukas Villiger. They were developed at the Massachusetts Institute of Technology (MIT) and presented just two years ago in a scientific journal. Before that, the ETH researchers had been working with traditional CRISPR/Cas approaches. In 2016, Schwank and Villiger starting using the techniques developed by the US researchers. “Even with the new base editors, the path still didn’t follow a straight line – we had to tinker around quite a bit”, says Villiger. The biggest surprise was that this system is so much more effective than the traditional CRISPR/Cas toolbox.

Schwank is now looking for funding to conduct trails on other animal models such as pigs. “The liver of the mouse differs in size and structure from that of humans or pigs, so we definitely have to expand the scope of our trials to other organisms to make progress.”

Phenylketonuria is not the only genetic metabolic disorder that affects the liver. For example, urea cycle disorders prevent the body from removing ammonia (as a by-product from foods containing nitrogen) from the blood and metabolizing it to urea. This results primarily in central nervous dysfunctions. The only currently available option to cure this disease is liver transplantation. Therefore, Schwank would like to test the newly developed genome editing tool for use in such diseases as well.

Source:

https://www.ethz.ch/en/news-and-events/eth-news/news/2018/10/erbkrankheit-mittels-genkorrektur-geheilt.html

Tagged with:

About author

Related Articles