Breaking News
January 19, 2019 - Newly identified subset of immune cells may be key to fighting chronic inflammation
January 19, 2019 - New immune response regulators discovered
January 18, 2019 - Poor blood oxygenation during sleep predicts chance of heart-related death
January 18, 2019 - First international consensus on the diagnosis and management of fibromuscular dysplasia
January 18, 2019 - Rapid resistance gene sequencing technology can hasten identification of antibiotic-resistant bacteria
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
January 18, 2019 - Eliminating the latent reservoir of HIV
January 18, 2019 - Pain From The Government Shutdown Spreads. This Time It’s Food Stamps
January 18, 2019 - Newly discovered regulatory mechanism helps control fat metabolism
January 18, 2019 - New rapid blood tests could speed up TB diagnosis, save the NHS money
January 18, 2019 - Researchers develop intelligent system for ‘tuning’ powered prosthetic knees
January 18, 2019 - Monoclonal antibody pembrolizumab prolongs survival in patients with squamous cell carcinoma
January 18, 2019 - New research detects mosquito known to transmit malaria for the first time in Ethiopia
January 18, 2019 - Lumex Instruments’ RA-915AM monitor installed at Hg treatment plant in Almadén, Spain
January 18, 2019 - ACCC survey finds multiple threats to growth of cancer programs
January 18, 2019 - Meeting the challenge of engaging men in HIV prevention and treatment
January 18, 2019 - Furloughed Feds’ Health Coverage Intact, But Shutdown Still Complicates Things
January 18, 2019 - Experts discuss various aspects on health risks posed by fumigated containers
January 18, 2019 - Researchers use gene-editing tool CRISPR/Cas9 to limit impact of parasitic diseases
January 18, 2019 - Alpha neurofeedback training could be a means of enhancing learning success
January 18, 2019 - Innovative ‘light’ method demonstrates positive results in fight against malignant tumors
January 18, 2019 - The cytoskeleton of neurons found to play role in Alzheimer’s disease
January 18, 2019 - New resource-based approach to improve HIV care in low- and middle-income countries
January 18, 2019 - Bedfont appoints Dr Jafar Jafari as first member of the Gastrolyzer Medical Advisory Board
January 18, 2019 - New study shows link between secondhand smoke and cardiac arrhythmia
January 18, 2019 - DZIF scientists reveal problems with available diagnostics for Zika and chikungunya virus
January 18, 2019 - Breast cancers more likely to metastasize in young women within 10 years of giving birth
January 18, 2019 - Over 5.6 million Americans exposed to high nitrate levels in drinking water
January 18, 2019 - Blood vessels can now be created perfectly in a petri dish
January 18, 2019 - Study identifies prominent socioeconomic and racial disparities in health behavior in Indiana
January 18, 2019 - Young-Onset Type 2 Diabetes Tied to Increased Hospitalization Risk
January 18, 2019 - For-profit nursing schools associated with lower performance on nurse licensure test
January 18, 2019 - Considering the culture of consent in medicine
January 18, 2019 - Researchers identify comprehensive guidelines for managing severe atopic dermatitis
January 18, 2019 - Analyzing proteins in blister fluid may classify burn severity more accurately
January 18, 2019 - Study finds higher suicide rates among youth who were Medicaid enrollees
January 18, 2019 - Opioid drugs often overprescribed to children for pain relief, say CHOP surgeons
January 18, 2019 - New biodegradable wound dressing material accelerates healing
January 18, 2019 - Life in Space May Take Toll on Spinal Muscles
January 18, 2019 - Bulldogs’ screw tails linked to human genetic disease
January 18, 2019 - Immunotherapy target identified for pediatric cancers
January 18, 2019 - Financial stress may increase heart disease risk in African Americans
January 18, 2019 - Scientists solve another piece of Ebola virus puzzle
January 18, 2019 - New project finds how endocrine disruptors interfere with thyroid functions
January 18, 2019 - Research finds decline in ketone body utilization when coronary circulation is reduced
January 18, 2019 - Let’s map our DNA and save billions each year in health costs
January 18, 2019 - AI demonstrates potential to identify irregular heart rhythms as well as humans
January 17, 2019 - Study shows link between air pollution and increased risk of sleep apnea
January 17, 2019 - Neck-strengthening exercises can protect athletes from concussions
January 17, 2019 - Computer model shows how to better control MRSA outbreaks
January 17, 2019 - Pain is unpleasant, and now scientists have identified the set of responsible neurons
January 17, 2019 - CUIMC Celebrates 2018-2019
January 17, 2019 - Study reveals potential pathway for endothelial cells to avoid apoptosis
January 17, 2019 - Hamilton Storage launches LabElite DeCapper SL to expand LabElite product family
January 17, 2019 - Location of epigenetic changes co-locate with genetic signal causing psychartric disorder
January 17, 2019 - Researchers awarded 6.1 million euros to address female fertility problems
January 17, 2019 - Counseling appointments fail to reduce weight gain during pregnancy, shows study
January 17, 2019 - Contraceptive patch that could provide 6 months of contraception within seconds
Researchers modify CRISPR to reorganize genome | News Center

Researchers modify CRISPR to reorganize genome | News Center

image_pdfDownload PDFimage_print

Researchers at Stanford University have reworked CRISPR-Cas9 gene-editing technology to manipulate the genome in three-dimensional space, allowing them to ferry genetic snippets to different locations in a cell’s nucleus. 

The new technique, dubbed CRISPR-genome organization or simply CRISPR-GO, uses a modified CRISPR protein to reorganize the genome in three dimensions. If CRISPR is like molecular scissors, then CRISPR-GO is like molecular tweezers, grabbing specific bits of the genome and plunking them down in new locations of the nucleus. But it’s more than just physical relocation: Displacing genetic elements can change how they function.

The research sheds new light on how the genome’s spatial organization in the nucleus governs the function of the cell overall.

“The question of why spatial organization in a cell matters is an important one, and it’s also not one that scientists agree on,” said Stanley Qi, PhD, assistant professor of bioengineering and of chemical and systems biology. “CRISPR-GO could provide an opportunity to answer that question by enabling us to target, move and relocate very specific stretches of DNA, and see how their new placements in the nucleus change how they function.”

Most mammalian cells contain a nucleus that houses more than 6 feet of DNA, if stretched out in a line. This genetic material determines the fate of the cells and, if out of place or damaged, can lead to disease. Previous studies have shown that DNA tends to clump in certain areas in the nucleus. How that placement affects the DNA’s function, however, is still unclear.

In the proof-of-principle study, Qi investigated three distinct subregions of the nucleus using CRISPR-GO, testing an overarching hypothesis: Do genes and other genetic elements behave differently in different zones of the nucleus?

So far, their data show that specific compartments and some free-floating bodies of proteins in the nucleus can sway the function of repositioned DNA. Depending on where the genetic materials are located, some nuclear regions repress gene expression and some accelerate telomere growth, and subsequently cell division. One protein body may even hold the power to suppress tumor formation.

A study detailing this research was published online Oct. 11 in Cell. Qi is the senior author. Postdoctoral scholar Haifeng Wang, PhD, is the lead author.

Bridging the gap

Demystifying the physical details of the genome has proved to be a tedious task, but there are some existing technologies that allow scientists to peer into cells and see how their guts are physically organized. What’s been missing is a way to tamper with this organization. CRISPR-GO is the first to offer researchers a means to do so.

By decommissioning the “cutting” mechanism of CRISPR-Cas9, the editing tool becomes more of a delivery system, which Qi used to deliver small stretches of DNA via a programmable guide RNA to a new location in the nucleus.>

There are three essential parts of CRISPR-GO. First, there’s what Qi calls the “address” of the genetic target that you want to relocate — a stretch of DNA that’s targeted with a complementary strand of binding RNA. Then, you need the destination’s address — the specific portion of DNA in a nuclear compartment to which you want to move the chromatin. Finally, there’s the “bridge,” which, in this case, is a catalyst that sparks the congealing of the target DNA to its new home in the nucleus. 

“Kids often like to build little railroads to help trains get from one station to another,” said Qi. “It’s not so different from what we’re doing here.”

Different room, different function

Qi describes the functionalities of the nuclear compartments like the spaces of a house. In every room of your home, you do different things — in the kitchen, you cook; in the bedroom, you sleep. In the nucleus of a cell, the same concept applies. There are multiple compartments in the nucleus that all have specific roles in upholding cell functionality overall. Qi and his lab investigated three distinct areas of the nucleus, testing whether they could somehow shift the function of chromatin depending on where they moved it.

Tagged with:

About author

Related Articles