Breaking News
November 16, 2018 - Dementia symptoms peak in winter and spring, study finds
November 16, 2018 - Stanford tobacco researcher weighs in on JUUL
November 16, 2018 - Researchers find no link between infants waking up at night and later developmental problems
November 16, 2018 - Both parents and children agree about confidential medical services
November 16, 2018 - FDA warns against use of unapproved pain medications with implanted pumps
November 16, 2018 - Precision medicine-based approach to slow or reverse biologic drivers of Alzheimer’s disease
November 16, 2018 - Study provides new insight into norovirus outbreaks, may help guide efforts to develop vaccines
November 16, 2018 - Inexpensive, portable air purifier could help protect the heart from pollution
November 16, 2018 - New 15-minute scan could help diagnose brain damage in babies up to two years old
November 16, 2018 - Deep brain stimulation not effective for treating early Alzheimer’s
November 16, 2018 - Traditional chemotherapy superior to new alternative for oropharyngeal cancers | News Center
November 16, 2018 - What This Pond Protist Does With Its Genome Will Astound You
November 15, 2018 - Researchers develop tool that speeds up analysis and publication of biomedical data
November 15, 2018 - Scientists identify mechanism used by lung cancer cells to obtain glucose
November 15, 2018 - Abnormalities in development of the brain could be involved in onset of autism, finds new study
November 15, 2018 - Soy protein equally effective as animal protein in building muscle strength
November 15, 2018 - American Academy of Pediatrics, Nov. 2-6
November 15, 2018 - Dopamine drives early addiction to heroin
November 15, 2018 - Variance in gut microbiome in Himalayan populations linked to dietary lifestyle | News Center
November 15, 2018 - Reducing Cardiovascular Disease: The Amish Way
November 15, 2018 - King’s researchers launch charter to guide organizations to engage abuse survivors in research
November 15, 2018 - Enable Injections enters into development agreements with UCB and Apellis Pharmaceuticals
November 15, 2018 - TGen North collaborates with NARBHA Institute to advance human health
November 15, 2018 - Researchers discover molecular basis for therapeutic actions of an African folk medicine
November 15, 2018 - Human Cell Atlas study of early pregnancy shows how mother’s immune system is modified
November 15, 2018 - New guidelines for detecting and managing sarcopenia to be launched in the UK
November 15, 2018 - Researchers explore role of dietary composition on energy expenditure
November 15, 2018 - Elsevier launches Entellect™ Platform, unlocking value by creating AI-ready life sciences data
November 15, 2018 - Now that cannabis is legal in Canada, let’s use it to tackle the opioid crisis
November 15, 2018 - In the Spotlight: At the intersection of tech, health, and ethics
November 15, 2018 - Traditional Glaucoma Test Can Miss Severity of the Disease
November 15, 2018 - Researchers directly connect activities of genes with instinctive behavior in male cichlids
November 15, 2018 - Salk researchers report new methods to identify AD drug candidates with anti-aging properties
November 15, 2018 - St. Jude Hospital announces availability of largest collections of leukemia samples
November 15, 2018 - Attenua Announces First Patient Treated in Phase 2 Clinical Trial in Chronic Cough with Bradanicline
November 15, 2018 - Designing a novel cell-permeable peptide chimera to promote wound healing
November 15, 2018 - NEI investigators combine two imaging modalities to view the retina in unprecedented detail
November 15, 2018 - Determining how hearts develop to better understand congenital heart defects
November 15, 2018 - Maverick immune cells can act independently to identify and kill cancer cells, finds research
November 15, 2018 - Advanced AI and big data methods to tackle dementia
November 15, 2018 - Report reveals increase in pancreatic cancer death rates across Europe
November 15, 2018 - Luxia Scientific announces availability of its gut microbiome test in Luxembourg
November 15, 2018 - New diabetes drugs linked to increased risk of lower-limb amputation and ketoacidosis
November 15, 2018 - New approach targets matrix surrounding neurons to protect neurons after stroke
November 15, 2018 - Lilly Submits New Drug Application to the FDA for Lasmiditan for Acute Treatment of Migraine
November 15, 2018 - Heart failure patients shouldn’t stop meds even if condition improves: study
November 15, 2018 - Parents and carers of people with diabetes experience emotional or mental health problems
November 15, 2018 - RetiPharma secures funding to develop new peptide drug for treating degenerative eye disorders
November 15, 2018 - Breakthrough research could lead to a new wave of cancer-fighting antibodies
November 15, 2018 - Mylan and Biocon launch new insulin glargine biosimilar in the UK
November 15, 2018 - For wildfire safety, only particular masks guard against toxic particulate matter
November 15, 2018 - New study of tribe shows influence of Western diet and lifestyle on blood pressure
November 15, 2018 - Scientists harness power of natural killer cells to treat children with neuroblastoma
November 15, 2018 - Investigating foodborne disease outbreak in Bosnia and Herzegovina based on simulation game
November 15, 2018 - Recommendations Issued for Management of Bradycardia
November 15, 2018 - Benefit unclear due to a lack of suitable studies
November 15, 2018 - TAMEST recognizes UT Southwestern’s Ralph DeBerardinis for changing our understanding of cancer
November 15, 2018 - Researchers discover key factors behind intestinal inflammation in CVID patients
November 15, 2018 - CityU develops first microarrayed 3D neuronal culture platform
November 15, 2018 - Expert suggests ways to control uncomfortable vaginal symptoms in diabetic women
November 15, 2018 - New edition of Red Journal focuses on roles of imaging in radiation oncology
November 15, 2018 - Doctors Aren’t Promoting Breastfeeding’s Cancer-Protection Benefit
November 15, 2018 - Collection of demonstration projects highlights value of patient engagement in research
November 15, 2018 - Technique to ‘listen’ to a patient’s brain during tumour surgery
November 15, 2018 - Seven-year-old returns to life as a “normal, healthy child” following bone marrow transplant
November 15, 2018 - AMSBIO expands range of high quality FFPE cancer cell line controls
November 15, 2018 - Marijuana use by kidney donors has no effect on transplant outcomes
November 15, 2018 - Exploring NMR Spectroscopy Applications through Interesting Infographics
November 15, 2018 - Chapman University wins additional $2.9 million NIH grant to study Alzheimer’s disease
November 15, 2018 - Microgel powder reduces infection and promotes healing
November 15, 2018 - Suicidal patients with prescribed access to psychotropic drugs should be closely monitored
November 15, 2018 - Nitric oxide-releasing technology shows potential to reduce healing time of diabetic foot ulcers
November 15, 2018 - Mass shootings may trigger unnecessary blood donations
November 15, 2018 - From heart disease to cancer: New study tracks shift of county death rates
November 15, 2018 - Preventing falls with new sensor technology
November 15, 2018 - Promising technology could improve detection, diagnosis of fatal ovarian cancer
November 15, 2018 - AAP updates concussion recommendations for children and teens
November 15, 2018 - Two genomic tests help identify most effective treatment for breast cancer patients
November 15, 2018 - Researchers evaluate efficacy of salivary biomarkers for early detection of oral cancer
November 15, 2018 - NIH awards $3.5 million to continue development of robotic system for treating brain tumors
Zebrafish study uncovers molecular ‘brake’ that helps control eye lens development

Zebrafish study uncovers molecular ‘brake’ that helps control eye lens development

image_pdfDownload PDFimage_print

How different cells in a multicellular organism acquire their identities remains a fundamental mystery of development. In the eye, for example, the lens contains two cell types – lens epithelial cells and lens fiber cells — the first of which differentiates into the second as an animal matures. Scientists have long known that fibroblast growth factor, or FGF, acts as the main gas pedal for this process. Now, scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have discovered that a different molecular signal acts as a brake pedal, preventing cells from differentiating where they shouldn’t.

The team conducted their experiments using zebrafish, whose eye structure is fundamentally conserved across vertebrates, including humans. Their findings, published October 15, 2018, in Development, grant new insight into the complex process of cell differentiation.

“Scientists are curious to know how such an elegant structure is constructed by a genetic program,” said Prof. Ichiro Masai, principal investigator of the Developmental Neurobiology Unit at OIST.

Besides demystifying lens development, the research may someday help uncover the pathology behind secondary cataracts, the most common complication of human cataract surgery.

A complement to known regulators

The spherical lens is mostly composed of lens fiber cells arranged in a tightly packed core. Lens epithelial cells cover the outermost surface of the front half of the lens, facing out from the body. As the lens epithelial cells proliferate, they migrate backwards, differentiate into lens fiber cells, and integrate into the existing lens fiber core.

The switch from one cell type to the other occurs during this migration, when epithelial cells cross a distinct boundary known as the “equator.” Molecular cues push the cells to differentiate into lens fiber cells once they’ve crossed this line. One crucial cue is FGF. While FGF boosts lens fiber differentiation, Masai wondered if there were a complementary system that repressed it.

“The switch from epithelial into fiber cells occurs very precisely at the equator — I thought there must be some tuning mechanism to ensure the equator-specific onset,” said Masai. “Maybe, once epithelial cells cross the equator, they are relieved of this inhibitory mechanism and allowed to differentiate.”

Researchers in the OIST Developmental Neurobiology Unit maintain a living library of mutant zebrafish for studies like this. Among hundreds of mutants, they selected one with uniquely abnormal lens development. Lens epithelial cells usually line up to form a single continuous layer, but in the mutants the cells pile up in a haphazard mass. That’s because a mutated gene causes lens epithelial cells to differentiate independent of FGF exposure, and without having to cross the equator.

The gene normally encodes a protein known as “vacuolar protein sorting-associated protein 45,” or VPS45. VPS45 helps to shuttle incoming materials through the cell, directing them to specialized organelles for degradation or back to the cell membrane for recycling. Recent studies suggest this trafficking system modulates signaling pathways within the cell, which in turn, regulate developmental processes.

When the gene is mutated, however, normal lens development becomes disrupted. Specific signals that maintain lens epithelial cells are suppressed, while signals that promote fiber cell differentiation are enhanced.

Application in basic biology and cataract surgery

Masai’s study is the first to describe a mechanism for lens fiber differentiation that is independent of FGF. He and his colleagues now aim to better understand how VPS45 regulates cellular signaling in the developing lens, and how those signals work together to support healthy development. Their research could eventually lead to medical interventions for when the process goes awry.

In the new study, for instance, the scientists found that a signaling pathway called TGF-ß became enhanced in the mutant zebrafish and caused abnormal lens development. TGF-ß signaling has also been shown to contribute to secondary cataracts, but scientists don’t yet understand why.

During cataract surgery, a patient’s cloudy lens is replaced with an artificial one. The operation restores the patient’s vision, but can also prompt an innate healing response in lens epithelial cells. In an effort to mend the wound, the cells transform into myofibroblastic cells or lens fiber cells and consequently cloud the patient’s brand-new lens. With a deeper understanding of factors driving lens development, scientists could circumvent secondary cataracts before they set in.

“Once we understand this underlying mechanism,” said Masai, “we could develop a therapy to inhibit the pathological process of secondary cataracts.”

Tagged with:

About author

Related Articles