Breaking News
April 24, 2019 - Making Laboratories More Efficient with the Most Modern LIMS on the Market
April 24, 2019 - Treating cancer patients with personalized, combination therapies improves outcomes
April 24, 2019 - Researchers engineer new molecules to help stop lung cancer
April 24, 2019 - Acupuncture can be a wonderful tool for preventing number of diseases
April 24, 2019 - Daily life disability before hip replacement may predict poor post-operative outcomes
April 24, 2019 - Study finds involuntary staying in housing estates to be a potential health risk
April 24, 2019 - Older kidney disease patients starting dialysis die at higher rates than previously thought
April 24, 2019 - Time-restricted eating shows promise for controlling blood glucose levels
April 24, 2019 - Research provides important insight on the brain-body connection
April 24, 2019 - In 10 Years, Half Of Middle-Income Elders Won’t Be Able To Afford Housing, Medical Care
April 24, 2019 - Researchers study how E. coli clones have become major cause of drug-resistant infections
April 24, 2019 - Bacterial and fungal toxins found in popular electronic cigarettes
April 24, 2019 - Factors affecting absorption of ‘sunshine vitamin’ during spring/summer months
April 24, 2019 - Texting helps improve medication adherence, health outcomes for patients with schizophrenia
April 24, 2019 - Cochrane Review looks at different ways to use nicotine replacement therapies
April 24, 2019 - New review on relationship between COPD and Type 2 diabetes
April 24, 2019 - Brain areas linked to memory and emotion aid odor navigation in humans
April 24, 2019 - Brain stimulation reverses age-related memory loss
April 24, 2019 - Amid Opioid Prescriber Crackdown, Health Officials Reach Out To Pain Patients
April 24, 2019 - $4 million NIH award will help establish UCI Skin Biology Resource-based Center
April 24, 2019 - Cancer drugs reprogram genes in breast tumors to prevent endocrine resistance, finds study
April 24, 2019 - Combination-imaging technique provides new window into macaque brain connections
April 24, 2019 - Researchers identify new allergen responsible for allergy to durum wheat
April 24, 2019 - Researchers define role of rare, influential cells in the bone marrow
April 24, 2019 - DNA rearrangement may predict poor outcomes in multiple myeloma
April 24, 2019 - FDA Approves Skyrizi (risankizumab-rzaa) for Moderate to Severe Plaque Psoriasis
April 24, 2019 - Combination therapy might be beneficial in schizophrenia
April 24, 2019 - Blood test can help match cancer patients to early phase clinical trials
April 24, 2019 - Women tend to underreport snoring and underestimate its loudness
April 24, 2019 - Comprehensive molecular test introduced for diagnosis of malaria caused by P. vivax parasites
April 24, 2019 - New range prediction approach increases accuracy, safety and tolerability of proton therapy
April 24, 2019 - Need for Sedation Up for Regular Cannabis Users
April 24, 2019 - Lack of access to antibiotics is a major global health challenge
April 24, 2019 - New study provides better understanding on safety of deworming programs
April 24, 2019 - EEG used to detect impact of maternal stress on neurodevelopment in 2-month-old infants
April 24, 2019 - FDA Approves First Generic Naloxone Nasal Spray Against Opioid Overdose
April 24, 2019 - A new way of finding compounds that prevent aging
April 24, 2019 - Mechanical training makes synthetic hydrogels perform more like muscle
April 24, 2019 - Study provides new insights into regulatory T cells’ role in protecting against autoimmune disease
April 24, 2019 - Pregnant women with type 1 diabetes are at greater risk of preterm birth
April 24, 2019 - ‘Tummy tuck’ can be safely performed in obese patients with no increase in complications
April 23, 2019 - ‘First’ 3-D print of heart with human tissue, vessels unveiled
April 23, 2019 - Which blood-based method works best to detect TB?
April 23, 2019 - Gene therapy cures infants suffering from ‘bubble boy’ immune disease
April 23, 2019 - Chemical-sampling wristbands detect similar exposures across three continents
April 23, 2019 - Management of Residual Limb Pain
April 23, 2019 - Molecular clock influences immune cell responses
April 23, 2019 - On the importance of culture, partnerships and diversity at the Dean’s Lecture Series
April 23, 2019 - Siddhartha Mukherjee Receives Lewis Thomas Prize for Writing About Science
April 23, 2019 - Dengue mosquito poses greatest danger of spreading Zika virus in Australia
April 23, 2019 - Scientists identify 104 high-risk genes for schizophrenia
April 23, 2019 - Abdominal etching can help patients to get classic ‘six-pack abs’ physique
April 23, 2019 - Alvogen Inc. Issues Voluntary Nationwide Recall of Fentanyl Transdermal System Due to Product Mislabeling
April 23, 2019 - Skype hypnotherapy is effective treatment for IBS
April 23, 2019 - The future hope of “flash” radiation cancer therapy
April 23, 2019 - Bicycling, Recycling, and Beyond: Public Safety to Host Shred Fest and Bike-to-Campus Day 
April 23, 2019 - Skipping breakfast linked with increased risk of death from heart disease
April 23, 2019 - Neuroscientists propose new theory about amyloid precursor protein connection in Alzheimer’s
April 23, 2019 - Mediterranean diet protects against overeating and obesity
April 23, 2019 - NUS scientists uncover novel biomarkers linked with ‘chemobrain’
April 23, 2019 - Novel ECCITE-seq technique expands multimodal single cell analysis
April 23, 2019 - Half of all American workplaces offer health and wellness programs
April 23, 2019 - Hypnosis may offer a genuine alternative to painkillers
April 23, 2019 - Sleep loss greatly interferes with job performance
April 23, 2019 - Study shows how elderberry fruit can help fight against influenza
April 23, 2019 - Parkinson’s sufferers regain mobility with new implant
April 23, 2019 - Perinatal Complications Tied to Childhood Social Anxiety
April 23, 2019 - Research reveals how immune cells help tumors escape body’s defenses
April 23, 2019 - UAB receives $17 million grant to explore immune cells in inaccessible tissues of the human body
April 23, 2019 - Opening blocked arteries may be lifesaver for older heart attack patients
April 23, 2019 - Yposkesi chairman to speak on ‘Manufacturing and the CDMO Perspective’ at Cell and Gene Meeting
April 23, 2019 - Listeria Outbreak Linked to Deli Meats, Cheeses in 4 States
April 23, 2019 - Scientists find another way HIV can hide from vaccines
April 23, 2019 - Improved WIC food packages reduced obesity risk for children, study finds
April 23, 2019 - EU ban on ‘meaty’ names for veggie food products would affect public sector
April 23, 2019 - KNAUER self-tests gender pay gap one month after Equal Pay Day
April 23, 2019 - Johns Hopkins study reports overdiagnosis of schizophrenia
April 23, 2019 - New approach to repair defects in fetal membranes could prevent life-long medical conditions
April 23, 2019 - Reviving the heart’s regenerative capacities using microRNAs
April 23, 2019 - New pediatric blood pressure guidelines can better predict kids at higher risk of heart disease
Down syndrome may hold important clues to onset of Alzheimer’s disease

Down syndrome may hold important clues to onset of Alzheimer’s disease

image_pdfDownload PDFimage_print

At first glance, Down syndrome (DS) and Alzheimer’s disease (AD), two severe brain abnormalities, may seem to have little in common. Down syndrome is a hereditary disease, the source of which has long been recognized–a triplication of chromosome 21. By contrast, the overwhelming majority of Alzheimer’s cases (over 95 percent), do not have a clear-cut genetic source. Instead, the disease, which usually becomes clinically apparent late in life, is caused by a perplexing constellation of factors. While these have been the focus of intense study for over 100 years, few conclusive answers have come to light.

In new research, Antonella Caccamo and her colleagues explore a number of critical factors that appear to link the two illnesses. The current project will use DS as a window into the underlying mechanisms that may give rise to Alzheimer’s pathology. Using this complementary approach, her $3.1 million NIH grant will explore the effects of a critical protein complex known as mTOR.

In the healthy brain, mTOR is involved in a range of essential physiological processes. mTOR is a regulator of protein synthesis and degradation. It plays a critical role in cell growth, longevity and the formation of the cytoskeleton, which provides living cells with their shape and structure, and mTOR is vital to maintaining the proper energy balance in many tissues throughout the body. mTOR is also implicated in synaptic plasticity, neuronal recovery and the retention of memory.

Caccamo is a researcher in the ASU-Banner Neurodegenerative Disease Research Center. Much of her research focuses on investigating Down syndrome molecular alterations in the brain in order to shed new light on Alzheimer’s disease.

“The ultimate goal of my research is to identify novel and clinically translatable targets, thus aiding in the development of new treatments for AD,” Caccamo says.

Learning from mTOR

Disruption of the mTOR pathway has been implicated in diseases including cancer, obesity and cardiovascular disease. Dysregulation of mTOR also plays an important role in diabetes and aging, two known risk factors for Alzheimer’s disease. Irregularities in mTOR functioning are linked to other neurodegenerative diseases and have been shown to give rise to two distinct neuropathologies: depositions in the brain of plaques composed of the protein amyloid beta (Aβ), and accumulations of another protein– known as tau–which aggregates within neuronal cell bodies, forming neurofibrillary tangles.

Plaques and tangles are the classic hallmarks of Alzheimer’s disease. Intriguingly, they also occur in the brains of virtually all patients with Down syndrome, some 60 percent of whom go on to develop Alzheimer’s disease by age 60. Interestingly, APP (amyloid precursor protein), a protein that when cleaved generates beta amyloid (Aβ), the toxic protein that accumulates in AD and DS brains, is located on chromosome 21, the same chromosome that is triplicated in Down syndrome.

Could disruption of the vital mTOR pathway offer clues to the development of plaques and tangles and the onset of dementia in both DS and AD patients? Is mTOR dysregulation also linked with a particular form of cell death known as necroptosis, likewise implicated in AD and DS pathology? Most importantly, can the investigation of the molecular drivers of AD pathology in DS patients provide a new window into the early mechanisms underlying the development of sporadic Alzheimer’s, the form of the disease that commonly strikes aging adults? These are some of the important questions Caccamo’s new study intends to address.

Relentless scourge

Alzheimer’s disease remains the only leading killer lacking any means of treatment, prevention or cure. The disease is pitiless in its systematic destruction of brain functioning, wiping memories clean and robbing the brain of its essential capacities, ultimately resulting in death–typically within 8-10 years of clinical diagnosis, though in some cases, Alzheimer’s can drag on for as long as 20 years. The emotional toll on patients, caregivers and society is immense and rapidly mounting.

Additionally, the staggering economic burden currently figures in the hundreds of billions of dollars in the US alone and is projected to top $1 trillion by 2050. The need for viable treatments and preventive strategies could not be more acute.

Today, researchers know that the onset of Alzheimer’s begins decades before its telltale signs become apparent. Some have gone so far as to say that while AD is usually thought of as a disease of old age, it may also be associated with adolescence when the early signposts of the disease are planted in the seemingly healthy brain. Many in the field believe that the best hope for arresting the ominous trajectory of the disease lies in identifying causal mechanisms at the earliest stage, and developing effective means of intervention before the brain is irreparably damaged.

Caccamo believes that mTOR dysregulation may be one such early mechanism, giving rise to AD pathology in aging adults as well as DS patients. Research has demonstrated that mTOR is hyperactive in specific brain regions in both AD and DS patients. mTOR hyperactivity is further associated with tau pathology as well as low levels of TSC2, a critical gene product that is believed to keep mTOR hyperactivity in check. Finally, preliminary data from Caccamo’s research indicates that cell loss in DS patients results in part from necroptosis, a unique form of cell suicide linked with dysregulation of mTOR.

This combination of factors has led to the central hypothesis of the new study: Dysfunction of the TSC2 complex causes an increase in mTOR activity in DS, leading to AD-like neurodegeneration by inducing necroptosis.

Streams and tributaries of Alzheimer’s pathology

Caccamo’s new project, entitled “Identify common mechanisms of neurodegeneration between Alzheimer’s disease and Down syndrome,” addresses these issues on several fronts. The first aim of the project is to identify the molecular mechanisms underlying mTOR hyperactivity in DS. Here, the association of dysfunctional TSC2 with mTOR hyperactivity is explored. What might be causing the downregulation of TSC2 leading to mTOR hyperactivity? Three possibilities are experimentally probed: the presence of epigenetic changes in TSC2 and mTOR, alteration of the turnover rate of the TSC2 protein and newly detected proteins that may likewise contribute to destabilizing the delicate TSC2/mTOR axis.

The second aim of the study is to determine the role of hyperactive mTOR in the development of AD-like phenomena in DS. Here, the hypothesis of hyperactive mTOR leading to AD pathologies, particularly Aβ plaques and neurofibrillary tangles, is explored using Ts65Dn mice, a genetic model of Down syndrome. Caccamo’s preliminary results show that mTOR hyperactivity precedes an increase in Aβ and tau levels and degeneration of cholinergic neurons in mice. By subtly increasing or decreasing mTOR signaling, the study will test the effects of reducing mTOR on Aβ and tau levels as well as degeneration of neurons in the mice. Further, increased mTOR levels will be examined to see if such changes increase AD-like pathology and cognitive deficits. Finally, the study will identify additional proteins falling under the regulation of hyperactive mTOR in DS.

Although the death of nerve cells in both Alzheimer’s and DS brains is a well-recognized occurrence associated with impaired cognitive ability, the mechanisms leading to cell death are still not well understood. The third aim of the new study will be to examine how mTOR hyperactivity contributes to neuronal loss. Earlier work by Caccamo and others suggests that a form of programmed cell death known as necroptosis contributes to the neurodegeneration typically observed in AD brains.

The third phase of the new study will investigate the hypothesis that hyperactive mTOR helps set this neurodegeneration process in motion by activating necroptosis pathways in the brain. Systematically modulating mTOR activity and necroptosis signaling in mouse neurons will be used to test this hypothesis. In addition to improving the understanding of the mechanisms leading to cell death in DS and AD, the research will help elucidate possible therapeutic targets for these two tragic afflictions.

Researchers have much to learn from in-depth studies like these, which delve into mTOR’s profound influence on the brain, in sickness and in health. In addition to its relevance in neurodegenerative disease, mTOR’s crucial role in the aging process may shed new light on other foundational issues in neuroscience.

Source:

https://biodesign.asu.edu/news/fight-against-alzheimer%E2%80%99s-down-syndrome-may-hold-vital-clues

Tagged with:

About author

Related Articles