Breaking News
January 16, 2019 - Questions to ask your doctor about post pregnancy care: MedlinePlus Medical Encyclopedia
January 16, 2019 - Neurons with good housekeeping are protected from Alzheimer’s
January 16, 2019 - Is mindfulness worthy of all the hype?
January 16, 2019 - Physical Activity, Any Type or Amount, Cuts Health Risk from Sitting
January 16, 2019 - New understanding in the evolution of human feet
January 15, 2019 - AHA: New Cholesterol Guidelines Put Ethnicity in the Spotlight
January 15, 2019 - Different brain areas linked to smoking and drinking
January 15, 2019 - Henry Marsh shares insights into neurosurgery and more at Dean’s Lecture Series
January 15, 2019 - Want to Live Longer? For Just 30 Minutes a Day, Do Anything Else But Sit
January 15, 2019 - The Current issue of “The view from here” is concerned with Targets
January 15, 2019 - Plain packaging sparked tobacco price rises, new study finds
January 15, 2019 - Sedentary lifestyles can be unhealthy, physical activity can lower risk
January 15, 2019 - Gut microbiome may help prevent development of cow’s milk allergy
January 15, 2019 - Lesbian, gay and bisexual individuals more likely to suffer severe substance use disorders
January 15, 2019 - New England Journal of Medicine Publishes Positive Results of the Pivotal Trial of Cablivi (caplacizumab) for Rare Blood Clotting Disorder
January 15, 2019 - Levels of inflammatory marker (CRP) linked to housing type and tenure
January 15, 2019 - Three gifts I’m glad I gave myself in 2018
January 15, 2019 - Columbia’s Pediatrics Department Names New Vice Chairs, Expands Leadership
January 15, 2019 - US FDA Accepts Regulatory Submissions for Review of Tafamidis to Treat Transthyretin Amyloid Cardiomyopathy
January 15, 2019 - Staying fit can cut your risk of heart attack by half
January 15, 2019 - Vitamin D supplements are of no gain to those over 70, study shows
January 15, 2019 - Scientists create comprehensive new method to predict breast cancer risk
January 15, 2019 - Research shows connection between social media use and impaired risky decision-making
January 15, 2019 - FDA Approves Expanded Use of Adacel (Tdap) Vaccine for Repeat Vaccination
January 15, 2019 - Treating spinal pain with replacement discs made of ‘engineered living tissue’ moves closer to reality
January 15, 2019 - Providers Walk ‘Fine Line’ Between Informing And Scaring Immigrant Patients
January 15, 2019 - Outcomes Poorer for Medicaid Beneficiaries With STEMI
January 15, 2019 - Decorative Products on Foods Can Be Unsafe
January 15, 2019 - A dream of sustainable surgery in Uganda
January 15, 2019 - Study shows how herpes viruses and tumors have learned to manipulate the same ancient RNA
January 15, 2019 - Common Heart, Diabetes Meds May Help Ease Mental Illness
January 15, 2019 - Stress and trauma in earliest years linked to reduced hippocampal volume in adolescence
January 15, 2019 - Scientists identify endogenous activator of sigma-1 receptors in human cells
January 15, 2019 - MAR treatments unlikely to be cause of premature or low birth weight babies
January 15, 2019 - Parental CPTSD increases transmission of trauma to offspring of Tutsi genocide survivors
January 15, 2019 - High-fat diets shown to increase blood pressure
January 15, 2019 - New institute for food safety to be established in Netherlands
January 15, 2019 - Keele University researchers receive £2.4 million grant to help reduce overprescribing of opioids
January 15, 2019 - Synthetic compound reverses mutant p53 aggregate accumulation, study shows
January 15, 2019 - First elder care robot tested in a WSU smart home apartment
January 15, 2019 - Oxford researchers explore relationship between technology use and adolescent mental health
January 15, 2019 - From microbiome research to healthier and sustainable foods
January 15, 2019 - How coaching moms and dads improves infants’ language skills
January 15, 2019 - Precision health approach tapped to identify causes of poverty
January 14, 2019 - DNA origami can accurately measure how antibodies interact with several antigens
January 14, 2019 - Researchers identify multiple new subtypes of most common childhood cancer
January 14, 2019 - Total Fertility Rates Vary by State
January 14, 2019 - Elevated blood lead level in early childhood associated with increased risk of academic problems in school-aged children
January 14, 2019 - Superior technique identified that can block CRISPR gene editing
January 14, 2019 - Turning breast cancer cells into fat cells prevents the formation of metastases
January 14, 2019 - Review examines what influences HIV-positive patients to stay on antiretroviral drugs in Africa
January 14, 2019 - Identifying genetic factors that lead to squamous cell carcinoma
January 14, 2019 - Virtual video visits can replace office visits without compromising quality of care
January 14, 2019 - Health Highlights: Jan. 10, 2019
January 14, 2019 - Molecular hallmarks of tumor hypoxia across 19 cancer types discovered
January 14, 2019 - Scientists uncover how protein clumps damage cells in Parkinson’s
January 14, 2019 - Physician-scientist’s “indomitable spirit” prevails over personal adversity
January 14, 2019 - King’s researchers receive £1.25 million to investigate fatal eating disorder
January 14, 2019 - UCR researchers uncover how plants sense temperature
January 14, 2019 - Scientists find link between colitis and colon cancer
January 14, 2019 - New skin patch provides long-acting contraceptive protection
January 14, 2019 - Asparagine synthetase deficiency – Genetics Home Reference
January 14, 2019 - Improved stem cell approach could aid fight against Parkinson’s
January 14, 2019 - New class of sleeping pill preserves ability to wake in response to danger signals
January 14, 2019 - Cancer patients are four times more likely to commit suicide
January 14, 2019 - The human brain works in reverse order to retrieve memories
January 14, 2019 - Simple tips can lead to better food choices
January 14, 2019 - Meth’s Resurgence Spotlights Lack Of Meds To Combat The Addiction
January 14, 2019 - TARA Biosystems and Insilico Medicine collaborate to discover novel therapies for cardiac disease
January 14, 2019 - Early life stress in mice affects their offspring behavior
January 14, 2019 - Depression Tied to Worse Asthma Outcomes in Urban Teens
January 14, 2019 - Santa calorie counting
January 14, 2019 - Opiod prescriptions for pet dogs misused by their masters
January 14, 2019 - People with ASD could be better at recognizing regret and relief in others finds study
January 14, 2019 - Conducting ChIP-Seq with Low Cell Numbers
January 14, 2019 - Study explores support and social networks of family carers of people with dementia
January 14, 2019 - At Risk for an Opioid OD? There’s an App for That
January 14, 2019 - Single national electronic health record will help improve care in Canadian hospitals
January 14, 2019 - Study unearths Britain’s first speech therapists
January 14, 2019 - Study reveals nuances of racial inequalities in breast cancer prevention
Breast Cancer as a Dynamic Disease

Breast Cancer as a Dynamic Disease

image_pdfDownload PDFimage_print

An interview with Dr. Andrew Ewald, Ph.D., discussing the influence of the myoepithelium on breast cancer growth and the importance of studying metastasis.

What is the tumor microenvironment and how is it linked to metastasis?

The tumor microenvironment is a general term describing all the things that are a part of the tumor but are not cancer cells. This includes healthy epithelial cells, cells of the immune system, blood vessels and the extracellular matrix (ECM); a scaffold of proteins that surrounds every tissue in the body, including tumors. The ECM also includes non-cellular features, such as the percentage of oxygen.

Cancer cell in tissue - Giovanni CancemiImage Credit: Giovanni Cancemi / Shutterstock

The tumor microenvironment is a hypoxic region containing a strong signaling group of cells that can withstand the mechanical forces and chemical signals surrounding the tumor.

This environment is important because it determines how the cancer cells will respond to treatment and thus, the prognosis of the disease. Patient outcomes are not just based on the size of the tumor and the number of mutations it contains. Instead, outcomes have a lot to do with the dialogue between cancer cells and the rest of the body, especially the cells and proteins found within the tumor microenvironment.

A central goal of my laboratory is to distinguish between promotion and resistance. We do this by building experimental systems in the laboratory wherein we can determine whether a given factor in the microenvironment is important or not in the growth of the tumor.

If a particular factor is found to be important for tumor growth, we might want to inhibit it. Equally, if a factor is inhibiting the growth of the tumor, we might want to strengthen its activity to prevent metastasis.

What is currently known about the breast cancer microenvironment and the stages of tissue invasion?

Breast cancer has two distinct forms; in situ and invasive. Ductal carcinoma in situ (DCIS), for example, is a fancy phrase for breast cancer cells that are surrounded by some of their normal tissue constraints. This includes myoepithelial cells and the basement membrane; a specialized set of proteins that surround the ducts of the breast.

As long as the cancer cells are inside both the myoepithelium and the basement membrane, the pathologist will diagnose it as ductal carcinoma in situ. Over 99% of these patients will have great outcomes.

Where it becomes challenging is when the cells have broken through the myoepithelium, which is clinically defined as invasive breast cancer. Whether or not the cancer cells have broken through the myoepithelium is the deciding feature between whether a diagnosis of DCIS or invasive breast cancer is made.

Regarding the breast cancer microenvironment, our lab and many others have proven on numerous occasions that the proteins surrounding the tumor are very important.

For example, collagen-1 is a very abundant protein in the human body. When a woman detects a lump in her breast, she’s feeling an abundance of collagen. This abundance is not like a couple of extra molecules – it is so much extra protein that it causes a lump. Work from labs such as Patricia Keely’s have shown that this collagen-1 is a very strong promoter of cancer invasion.

Our research has considered this as well. We recently showed that if you put cancer cells near collagen-1, they will align the collagen-1 into something resembling railroad tracks that they then use to migrate out of the tumor.

The myoepithelium, on the other hand, is resisting the invasion of the tumor. Therefore, if there is a myoepithelium, the cancer is not invasive, whereas if there is a break in the myoepithelium, the cancer cells migrate out into other tissues. We focused this project on trying to understand how that worked, how to think about it, and what we could do next.

Breast cancer cells undergoing metastasis through blood vessel - moving to another area of the body Giovanni CancemImage Credit: Giovanni Cancemi / Shutterstock

Please describe your recent research surrounding breast cancer.

We knew that the presence and integrity of the myoepithelial layer was the difference between a benign disease and an invasive one, but we wanted to understand how it worked.

We started by building 3D culture assays, which would allow us to grow whole tissues in the laboratory. You can think of tissue organization as being like raisins in a Jell-O mold; you have these structures growing within a three-dimensional environment of proteins.

We used various genetic tricks to visualize the cells that were trying to invade in one color and the myoepithelial cells in another color.

What was immediately striking was that the myoepithelium was actively responding to the invasive behavior of the cancer cells.

We would see the invasive cancer cells marching forward, and the myoepithelium reach out, recover them, and push them back inside. Most of the time, the myoepithelium would win.

Katarina Sirka

Real-time 3D confocal time-lapse movie of Twist1-expressing epithelial cells (red) invading into the surrounding extracellular matrix and then being restrained and pulled back by normal myoepithelial cells (green). Image Credit: Katarina Sirka.

Having seen this, we were really excited, but first, we needed to test whether this was a correlation or something that was causally related. We arranged different ratios of myoepithelial cells to invasive cells and were able to show that the more myoepithelial cells you had, the less invasion that occurred up to the point where you had a complete myoepithelial layer with essentially no invasion.

The next step was to understand the molecular basis of this interaction. We inhibited different pathways involved with either the adhesion between the myoepithelial cells or the contraction of the myoepithelial cells. Our results showed that both of those features, adhesion, and contraction, were required for the myoepithelium to act as a barrier to invasive behavior.

How do your findings differ to previous research, and what does this mean for patients?

How is it different? The analogy we like to use here is that people knew that the presence of the myoepithelium correlated with patient outcomes and that it was sufficient for a diagnosis of invasive breast cancer, but what they didn’t know was how those myoepithelial cells worked.

Before our research, it was possible this was purely a correlation. Ours is one of a very small number of papers that have tested whether the myoepithelial cells are functionally involved in resisting invasion, or whether they were just a good marker for the presence of invasion.

The most important concept that this paper introduces is the myoepithelium as a dynamic barrier. The analogy I like to use is between that of a castle wall. Imagine the outer wall in a castle; if that wall is breached, the invading army can simply run through it. There’s no further resistance from a wall after there’s a big hole in it.

However, what we showed is that the myoepithelium is better thought of as a soccer or football defense. The cancer cell can break though partially, but the myoepithelial cells will actively migrate, try to push it back inside.

The idea of a dynamic response to changes within a tissue is having an impact on research into other diseases. Scientists are now starting to consider the involvement of cells and epithelial barriers in a completely different way.

In answer to your second question, the key concept here is that we’ve increased our understanding of how the myoepithelium works and are now actively collaborating with pathologists to test whether we can leverage this understanding of how the myoepithelium works to provide a more individualized and personalized assessment of the risk of recurrence for women with breast cancer or DCIS.

What are the next steps for your research?

My laboratory studies metastasis; that’s the number one thing we’re interested in studying. We’re trying to understand how normal cells, through a series of mutations, acquire the ability to spread through the body, survive an unfamiliar environment, invade the immune system, and eventually grow tumors in distant organs.

We’re primarily focused on this question concerning breast cancer because it is in this disease that we think we could make the biggest and most immediate impact on patient outcomes with more research.

At the moment, we are trying to understand how the cells of the immune system interact with cancer cells as they’re spreading through the body.

We’re also working to understand the way in which molecular pathways in the cancer cell allow it to survive as it spreads through the body and transitions into a distant organ.

If we can understand all of this, and model the data using computational systems, we should be able to have a real impact on patient outcomes.

Where can readers find more information?

About Dr. Andrew Ewald

Dr. Ewald received his undergraduate degree in physics with honors from Haverford College. He earned his Ph.D. in biochemistry and molecular physics from the California Institute of Technology.

He completed postdoctoral work with Zena Werb in mammary biology and cancer at the University of California, San Francisco. Dr. Ewald joined the Johns Hopkins faculty in 2008.

He is a member of the American Association for Cancer Research, Society for Developmental Biology, and the American Society for Cell Biology.

Dr. Ewald’s work was recognized with the 2011 Morphological Sciences Award from the American Association of Anatomists for his contributions to the field of epithelial morphogenesis.

Tagged with:

About author

Related Articles