Breaking News
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
January 19, 2019 - First-ever tailored reporting guidance to improve patient care and outcomes
January 19, 2019 - 4.6 percent of Massachusetts residents have opioid use disorder
January 19, 2019 - New study suggests vital exhaustion as risk factor for dementia
January 19, 2019 - New antibiotic discovery heralds breakthrough in the fight against drug-resistant bacteria
January 19, 2019 - Ural Federal University scientists synthesize a group of multi-purpose fluorophores
January 19, 2019 - Researchers identify new therapeutic target in the fight against chronic liver diseases
January 19, 2019 - Preparation, characterization of Soyasapogenol B loaded onto functionalized MWCNTs
January 19, 2019 - FDA Approves Ontruzant (trastuzumab-dttb), a Biosimilar to Herceptin
January 19, 2019 - Tobacco use linked with higher use of opioids and sedatives
January 19, 2019 - Study delves deeper into developmental dyslexia
January 19, 2019 - Anti-vaccination movement one of the top health threats in 2019 says WHO
January 19, 2019 - Newly developed risk score more effective at identifying type 1 diabetes
January 19, 2019 - Highly effective protocol to prepare cannabis samples for THC/CBD analysis
January 19, 2019 - Prinston Pharmaceutical Inc. Issues Voluntary Nationwide Recall of Irbesartan and Irbesartan HCTZ Tablets Due to Detection of a Trace Amount of Unexpected Impurity, N-Nitrosodiethylamine (NDEA) in the Products
January 19, 2019 - How does solid stress from brain tumors cause neuronal loss, neurologic dysfunction?
January 19, 2019 - $14.7 million partnership to supercharge vaccine development
January 19, 2019 - Ian Fotheringham receives Charles Tennant Memorial Lecture award
January 19, 2019 - Brain vital signs detect neurophysiological impairments in players with concussions
January 19, 2019 - Lack of job and poor housing conditions increased likelihood of people attending A&E
January 19, 2019 - Novel targeted drug delivery system improves conventional cancer treatments
January 19, 2019 - Rutgers study finds gene responsible for spread of prostate cancer
January 19, 2019 - Complications Higher Than Expected for Invasive Lung Tests
January 19, 2019 - 3-D printed implant promotes nerve cell growth to treat spinal cord injury
January 19, 2019 - Automated texts lead to improved outcomes after total knee or hip replacement surgery
January 19, 2019 - Poor cardiorespiratory fitness could increase risk of future heart attack, finds new study
January 19, 2019 - Drinking soft drinks while exercising in hot weather may increase risk of kidney disease
January 19, 2019 - Formlabs 3D prints anatomical models
January 19, 2019 - Heart-Healthy Living Also Wards Off Type 2 Diabetes
January 19, 2019 - Teaching Kids to Be Smart About Social Media (for Parents)
January 19, 2019 - Metabolite produced by gut microbiota from pomegranates reduces inflammatory bowel disease
January 19, 2019 - Researchers examine how spray from showers and toilets expose us to disease causing bacteria
January 19, 2019 - Behavioral experiments confirm that additional neurons improve brain function
January 19, 2019 - New study compares performance of real-time infectious disease forecasting models
January 19, 2019 - Obesity can be risk factor for developing renal cell carcinoma, confirms study
January 19, 2019 - New regulation designs on cigarette packs direct smokers’ attention to health warnings
January 19, 2019 - QIAGEN receives first companion diagnostic approval in Japan
January 19, 2019 - Study explores role of Dunning-Kruger effect in anti-vaccine attitudes
January 19, 2019 - Newly identified subset of immune cells may be key to fighting chronic inflammation
January 19, 2019 - New immune response regulators discovered
January 18, 2019 - Poor blood oxygenation during sleep predicts chance of heart-related death
January 18, 2019 - First international consensus on the diagnosis and management of fibromuscular dysplasia
January 18, 2019 - Rapid resistance gene sequencing technology can hasten identification of antibiotic-resistant bacteria
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
January 18, 2019 - Eliminating the latent reservoir of HIV
January 18, 2019 - Pain From The Government Shutdown Spreads. This Time It’s Food Stamps
January 18, 2019 - Newly discovered regulatory mechanism helps control fat metabolism
January 18, 2019 - New rapid blood tests could speed up TB diagnosis, save the NHS money
Genetically engineered 3-D human muscle transplant in a murine model

Genetically engineered 3-D human muscle transplant in a murine model

image_pdfDownload PDFimage_print
Vascular cell transduction and multicellular culturing strategy. Schematic representation of the diverse multicellular cultures examined: co-cultures and tri-cultures of naive or ANGPT-1 secreting endothelial cells with naive or VEGF-secreting SMCs and human myoblasts to generate 3D vascular networks within skeletal muscle constructs. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, requiring site/donor compatible surgical reconstruction. The existing ‘gold standard’ treatment in reconstructive surgery incorporates autologous flaps, although the technique is limited by low anatomical availability and donor site morbidity during clinical transplantation. As a clinically favorable alternative, tissue engineering presents strategies to engineer tissue grafts with improved quality and effectiveness. To maintain the viability of implants upon transplantation, increasing efforts are invested in designing pre-vascularized engineered tissue. Design examples include a multicellular culture of endothelial, mural and tissue-specific cells for self-assembly of vessel networks and cellular co-culture to build lasting, stable blood vessels to induce neovascularization within the host.

Recent studies have also demonstrated the possibility of engineering three-dimensional (3-D) muscle grafts from human cells (adult and differentiated) for seamless integration with native tissue upon transplantation. In parallel studies, a group of researchers showed that intra-arterial injections of adult venous endothelial cells proximal to an occluded artery in critical limb ischemia patients stimulated collateral expansion in Phase I and Phase Ib clinical trials.

The same multidisciplinary research team from the departments of Biomedical Engineering and Medicine now report on the development of a 3-D prevascularized engineered muscle containing human myoblasts (muscle cells) with genetically engineered endothelial cells and smooth muscle cells (SMCs), transplanted within a mouse host to enhance neovascularization and myogenesis. The outcomes are detailed in Nature Communications Biology, where Luba Perry and co-workers integrated myoblasts in endothelial cell-mural cell co-cultures as a tissue engineering strategy to increase the mechanical strength of transplanted tissue. The genetically modified vascular cells were cleared for clinical trials by the Food and Drug Administration (FDA), with potential for use in autologous vascularized tissue construction. The study showed promise for translating genetically engineered muscle in clinical settings to overcome autologous tissue shortage and accelerate host neovascularization for engineered grafts integration post-transplantation.

Images and schematics of the abdominal imaging window (AIW), a) schematic representation of the surgical procedure, b,c) top and bottom view of the AIW, d,e) lateral view of the AIW (scale bar = 10 mm), f) the AIW immediately post-transplantation in the abdominal muscle, the area of the implanted graft is seen in yellow dashes, g) the AIW 14 days post-implantation in the muscle, h) the graft integrated completely at 14 days post implantation in the muscle, i) the surgical procedure imaged with a mouse stabilized in a custom-made stabilizing imaging device (SID) for intravital confocal imaging. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

The scientists seeded a multicellular culture of human angiopoietin 1 (ANGPT1) expressing endothelial cells (endothelial cellANGPT1) with human vascular endothelial growth factor (VEGF) expressing smooth muscle cells (SMCVEGF) and human myoblasts (hMyo) on 3-D polymer scaffolds to accelerate the vessel network formation and neovascularization in vitro and in vivo. Upon transplantation into mice with an abdominal wall defect, the host neovascularization was observed via an abdominal imaging window (AIW) for up to 14 days. To avoid transplant rejection, the study used immunodeficient mice for human graft integration. Since the cells used in the study were already FDA-approved for use in clinical trials, the findings may have significant implications in the construction of autologous, transplantable grafts for clinical integration and vascularization.

To genetically engineer the endothelial cell ANGPT1, adult endothelial cells were transduced with a retroviral vector to express ANGPT1 and then transduced with ZsGreen lentiviral particles. Adult SMCs were also similarly transduced with a retroviral vector to express VEGF165 (SMCVEGF) by replicating an established protocol. The expression of transgenes was determined via immunohistochemistry and enzyme linked immunosorbent assays (ELISAs).

In vitro vessel-like network stability. Representative 3D confocal images of whole-mount immunofluorescent scaffolds populated with endothelial cellANGPT1 (green), SMCsVEGF (red) and nuclei (blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Scaffolds were fabricated using 3-D porous poly-L-lactic acid (PLLA) and polylactic glycolic acid (PLGA) polymers with ranging pore sizes and porosity, replicating a previously described protocol. The authors investigated six multicellular cultures (co- and tri-culture cells) on separate scaffolds to generate 3-D vascular networks. Scaffolds were populated with diverse compositions of endothelial cellANGPT1, SMCsVEGF and primary human skeletal muscle cells (hMyo) visualized using immunofluorescence; endothelial cells were stained green, αSMA-positive cells stained red, and nuclei stained blue. The higher number of endothelial cells surrounded by αSMA-expressing mural cells suggested the formation of stable vessels.

To investigate the influence of ANGPT1 and VEGF overexpression on vessel maturation, the vascularized constructs were stained for collagen IV and vascular endothelial (VE) cadherin. The results demonstrated a higher percentage of collagen IV-wrapped vessels.

In vitro vessel-like maturity. Representative confocal images of whole-mount immunofluorescent scaffolds populated with tricultures (Endothelial cells – green, collagen positive cells – red, nuclei – blue). Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

Once ANGPT1-overexpressing endothelial cells were found to increase both the length and maturity of the vessel-like networks formed in vitro, the effect on host vascularization was examined upon transplantation. For in vivo investigations, the scientists used a previously established rectus abdominis muscle defect nude mouse model. The engineered muscles included those formed from a naive endothelial cell-SMC-myoblasts tri-culture as the control, alongside muscles formed from endothelial cellANGPT1, SMCVEGF and myoblasts tri-culture as the test, implanted four days after seeding. Both groups showed highly effective host-graft integration 14 days post implantation.

In vivo neovascularization, a) representative confocal images of the graft obtained through the AIW for control vs. test grafts (green: human endothelial cells-ZsGreen, red: TRITC dextran, blue: mouse CD31), b) representative confocal large-magnification images of grafts with native or ANGPT1 and VEGF expressing tricultures (scale bar – 100 µm) c) representative image of TRITC-dextran circulating in transplanted scaffolds and its respective AngioTool analysis; vessel skeletons are in red, vessel borders in yellow and vessel junctions in blue, d) AngioTool quantitated total vessel length of both functional and non-functional mouse blood vessels. Data are expressed as box-and-whisker plots, e) AngioTool-quantified total vessel length of functional blood vessels, d) AngioTool-quantified total vessel length of implanted endothelial cells (ECs) (control and test), implanted ECs were mostly noticeable in the control grafts, while those in the test grafts were barely noticeable at days 4-14. Credit: Communications Biology, doi:10.1038/s42003-018-0161-0.

By as early as four days after implantation, the host vessel invaded into both graft types, although the progression and coverage were faster in the ANGPT-1- and VEGF-expressing test grafts. After 14 days of transplantation, the test grafts were more densely populated with host vasculature than the control triculture grafts; by this time, the implanted scaffold vasculature for either graft was no longer visible. At four to 14 days post-transplantation, the total length of the vessels in constructs were calculated using the AngioTool software, with greater vessel length seen in ANGPT1- and VEGF- expressing grafts compared to the controls. Images of hematoxylin and eosin (H&E) stains of transplanted grafts indicated they were perfused and functional comparable to physiological vessel density of the surrounding native muscle by day 14. Muscle fibers formed around and inside the graft area within the same timeline, covering a larger area in the test grafts compared to the controls to indicate superior myogenesis.

The detailed construction of a genetically engineered, vascularized muscle tissue can be translated to engineer other types of vascularized tissue by integrating tissue-specific cell types. The ability to derive such cells from elderly patients is of great importance as they can be transplanted without rejection. The regulatory challenges along the bench-to-bedside route of autologous engineered tissue products present a challenge, accompanied with the time-length for cell culture, which must be accounted for. Engineered muscles should be further optimized to better mimic native muscle tissue, followed by animal studies in larger animal models—alongside comparisons between different donor cells, prior to translating the genetically engineered vascularized 3-D muscle grafts to a clinical setting.


Explore further:
New approach reduces immune response to tissue engineered vascular grafts

More information:
Luba Perry et al. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis, Communications Biology (2018). DOI: 10.1038/s42003-018-0161-0

Luba Perry et al. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle, Molecular Therapy (2017). DOI: 10.1016/j.ymthe.2017.02.011

Naoto Koike et al. Creation of long-lasting blood vessels, Nature (2004). DOI: 10.1038/428138a

Journal reference:
Molecular Therapy

Nature

Tagged with:

About author

Related Articles