Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Scientists engineer antiviral peptide that exploits Achilles’ heel of Zika virus

Scientists engineer antiviral peptide that exploits Achilles’ heel of Zika virus

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have engineered an antiviral peptide that exploits the Zika virus at its Achilles’ heel – the viral membrane – hence stopping the virus from causing severe infections.

This new method of attacking the viral membrane focuses on directly stopping Zika virus particles rather than preventing the replication of new virus particles, and can potentially work against a wide range of membrane-enveloped viruses.

When administered in Zika-infected mice in the lab, the engineered peptide drug (a compound consisting of amino acids) reduced disease symptoms and the number of deaths. Importantly, the peptide was able to cross the nearly impenetrable blood-brain barrier to tackle viral infection in mouse brains and protect against Zika injury, a critical feature since Zika targets the brain and central nervous system.

The research team led by NTU Singapore’s Associate Professor Nam-Joon Cho published their findings in the peer-reviewed journal Nature Materials on 22 October 2018.

The study, done in collaboration with the Federal University of Minas Gerais (UFMG) in Brazil and Ghent University in Belgium, spanned over six years and combined materials engineering, antiviral drug development, and pharmacology.

“There are currently no vaccines for the Zika virus, while available medicines only alleviate symptoms such as fever and pain,” said Assoc Prof Cho of NTU’s School of Materials Science and Engineering. “This newly created peptide holds great promise in becoming a future antiviral drug that can act directly on viral infections in the brain.”

The Zika virus is transmitted by Aedes mosquitoes and infections during pregnancy are linked to birth defects such as microcephaly, a condition in which a baby is born with an abnormally small head and brain. The World Health Organisation declared the Zika disease an international emergency in 2016, and it remains a large threat globally today.

How the engineered antiviral peptide works

In 2004, Assoc Prof Cho developed the first antiviral peptide that works against viral membranes in laboratory tests. Since then, NTU scientists have studied how antiviral peptides can create pores that form in membranes made up of two layers of lipids (a component of fats).

Over the years, the team studied the peptide’s interactions with lipid membranes and engineered new peptides with greater potency and improved pharmacological properties. These findings led them to test a particularly promising peptide in Zika-infected mice and also showed that it ruptured other similar-sized enveloped viruses in the laboratory, such as dengue and chikungunya.

“The peptide differentiates between Zika viral membranes and mammalian cell membranes because the virus particles are much smaller and more curved, while the mammalian cells are larger and flatter. Like how a pin pricks a balloon, the peptide pricks a hole in the viral membrane. Prick enough holes, and the virus will be ruptured,” said Assoc Prof Cho.

Lab tests showed that when the peptide was administered, 10 out of 12 infected mice survived. In comparison, all the mice in the control group died within a week post-infection. In addition, therapeutic concentrations of the peptide were able to cross the blood-brain-barrier, allowing it to inhibit viral infection in the brain.

“The exciting antiviral results validate the potential of this innovative therapeutic strategy and are further enhanced by the engineered peptide’s ability to cross the blood-brain barrier,” said Jeffrey S. Glenn, a Professor of Medicine and Microbiology & Immunology at Stanford University, who is not part of the study. Professor Glenn is also a former member of the US FDA Antiviral Drugs Advisory Committee.

Fresh approach in targeting viruses

In general, most antiviral drugs target the replication process of viruses. However, viruses often mutate quickly and antiviral drugs that target viral replication can become obsolete. Attacking the physical structure of enveloped viruses is a new approach to developing antiviral drugs. It offers promise for the peptide to be effective even if the Zika virus attempts to mutate.

Assoc Prof Cho said, “There are instances where a virus mutation can lead to an epidemic in a short time, leaving communities unprepared. By targeting the lipid membrane of virus particles, scientists may devise more robust and effective ways to stop viruses.”

The Zika virus belongs to the Flaviviridae family and is related to other mosquito-borne viruses like dengue, chikungunya and yellow fever. As all flaviviruses have virus particles that are around 40-55 nanometres in diameter and are enveloped by a lipid membrane, the peptide engineered by the scientists from NTU Singapore has the potential to work against these viruses too.

Laboratory tests in this study confirm this potential and in future, the research team intends to study the effects of the peptide on diseases caused by these other viruses in greater detail. The team will also conduct trials in larger animals, and subsequently will plan to initiate human clinical trials, once relevant preclinical studies are completed and regulatory approvals obtained.

“This work represents a paradigm-changing breakthrough in the field of antiviral drug design,” commented Professor William C. Wimley, an antimicrobial peptide expert from Tulane University in the United States, who is not part of the study.

“It shows how the viral envelope, a novel target in antiviral drug design, can specifically be targeted by a peptide. It also shows that a peptide targeting the viral envelope can effectively inhibit virus in the body, and even in the brain, an organ that actively excludes many therapeutics. Given the vast potential of peptides as antibacterial and antifungal agents, this may be a game-changing discovery that will be broadly applicable to the design of anti-infective drugs against many classes of pathogens.”

Related antiviral technologies have been licensed from NTU Singapore to a local spin-off company, TSG Therapeutics Pte. Ltd., as part of plans to spur clinical translation. Assoc Prof Cho is co-founder of TSG Therapeutics.

Source:

http://news.ntu.edu.sg/pages/newsdetail.aspx?URL=http://news.ntu.edu.sg/news/Pages/NR2018_Oct24.aspx&Guid=455253b2-9f98-4f60-b282-74cd55e26f07&Category=News+Releases

Tagged with:

About author

Related Articles