Breaking News
January 22, 2019 - Amgen And UCB Receive Positive Vote From FDA Advisory Committee In Favor Of Approval For Evenity (romosozumab)
January 22, 2019 - Does being bilingual make children more focused? Study says no
January 22, 2019 - Study reveals new genes and biological pathways linked to osteoarthritis
January 22, 2019 - FSU study provides better understanding of spinal cord injuries
January 22, 2019 - Delaying bath for newborn babies increases breastfeeding rates, finds study
January 21, 2019 - Many parents still try non-evidence-based cold prevention methods for children
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Simple blood test reliably detects signs of Alzheimer’s damage before symptoms
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
Scientists engineer antiviral peptide that exploits Achilles’ heel of Zika virus

Scientists engineer antiviral peptide that exploits Achilles’ heel of Zika virus

image_pdfDownload PDFimage_print

Scientists at Nanyang Technological University, Singapore (NTU Singapore) have engineered an antiviral peptide that exploits the Zika virus at its Achilles’ heel – the viral membrane – hence stopping the virus from causing severe infections.

This new method of attacking the viral membrane focuses on directly stopping Zika virus particles rather than preventing the replication of new virus particles, and can potentially work against a wide range of membrane-enveloped viruses.

When administered in Zika-infected mice in the lab, the engineered peptide drug (a compound consisting of amino acids) reduced disease symptoms and the number of deaths. Importantly, the peptide was able to cross the nearly impenetrable blood-brain barrier to tackle viral infection in mouse brains and protect against Zika injury, a critical feature since Zika targets the brain and central nervous system.

The research team led by NTU Singapore’s Associate Professor Nam-Joon Cho published their findings in the peer-reviewed journal Nature Materials on 22 October 2018.

The study, done in collaboration with the Federal University of Minas Gerais (UFMG) in Brazil and Ghent University in Belgium, spanned over six years and combined materials engineering, antiviral drug development, and pharmacology.

“There are currently no vaccines for the Zika virus, while available medicines only alleviate symptoms such as fever and pain,” said Assoc Prof Cho of NTU’s School of Materials Science and Engineering. “This newly created peptide holds great promise in becoming a future antiviral drug that can act directly on viral infections in the brain.”

The Zika virus is transmitted by Aedes mosquitoes and infections during pregnancy are linked to birth defects such as microcephaly, a condition in which a baby is born with an abnormally small head and brain. The World Health Organisation declared the Zika disease an international emergency in 2016, and it remains a large threat globally today.

How the engineered antiviral peptide works

In 2004, Assoc Prof Cho developed the first antiviral peptide that works against viral membranes in laboratory tests. Since then, NTU scientists have studied how antiviral peptides can create pores that form in membranes made up of two layers of lipids (a component of fats).

Over the years, the team studied the peptide’s interactions with lipid membranes and engineered new peptides with greater potency and improved pharmacological properties. These findings led them to test a particularly promising peptide in Zika-infected mice and also showed that it ruptured other similar-sized enveloped viruses in the laboratory, such as dengue and chikungunya.

“The peptide differentiates between Zika viral membranes and mammalian cell membranes because the virus particles are much smaller and more curved, while the mammalian cells are larger and flatter. Like how a pin pricks a balloon, the peptide pricks a hole in the viral membrane. Prick enough holes, and the virus will be ruptured,” said Assoc Prof Cho.

Lab tests showed that when the peptide was administered, 10 out of 12 infected mice survived. In comparison, all the mice in the control group died within a week post-infection. In addition, therapeutic concentrations of the peptide were able to cross the blood-brain-barrier, allowing it to inhibit viral infection in the brain.

“The exciting antiviral results validate the potential of this innovative therapeutic strategy and are further enhanced by the engineered peptide’s ability to cross the blood-brain barrier,” said Jeffrey S. Glenn, a Professor of Medicine and Microbiology & Immunology at Stanford University, who is not part of the study. Professor Glenn is also a former member of the US FDA Antiviral Drugs Advisory Committee.

Fresh approach in targeting viruses

In general, most antiviral drugs target the replication process of viruses. However, viruses often mutate quickly and antiviral drugs that target viral replication can become obsolete. Attacking the physical structure of enveloped viruses is a new approach to developing antiviral drugs. It offers promise for the peptide to be effective even if the Zika virus attempts to mutate.

Assoc Prof Cho said, “There are instances where a virus mutation can lead to an epidemic in a short time, leaving communities unprepared. By targeting the lipid membrane of virus particles, scientists may devise more robust and effective ways to stop viruses.”

The Zika virus belongs to the Flaviviridae family and is related to other mosquito-borne viruses like dengue, chikungunya and yellow fever. As all flaviviruses have virus particles that are around 40-55 nanometres in diameter and are enveloped by a lipid membrane, the peptide engineered by the scientists from NTU Singapore has the potential to work against these viruses too.

Laboratory tests in this study confirm this potential and in future, the research team intends to study the effects of the peptide on diseases caused by these other viruses in greater detail. The team will also conduct trials in larger animals, and subsequently will plan to initiate human clinical trials, once relevant preclinical studies are completed and regulatory approvals obtained.

“This work represents a paradigm-changing breakthrough in the field of antiviral drug design,” commented Professor William C. Wimley, an antimicrobial peptide expert from Tulane University in the United States, who is not part of the study.

“It shows how the viral envelope, a novel target in antiviral drug design, can specifically be targeted by a peptide. It also shows that a peptide targeting the viral envelope can effectively inhibit virus in the body, and even in the brain, an organ that actively excludes many therapeutics. Given the vast potential of peptides as antibacterial and antifungal agents, this may be a game-changing discovery that will be broadly applicable to the design of anti-infective drugs against many classes of pathogens.”

Related antiviral technologies have been licensed from NTU Singapore to a local spin-off company, TSG Therapeutics Pte. Ltd., as part of plans to spur clinical translation. Assoc Prof Cho is co-founder of TSG Therapeutics.

Source:

http://news.ntu.edu.sg/pages/newsdetail.aspx?URL=http://news.ntu.edu.sg/news/Pages/NR2018_Oct24.aspx&Guid=455253b2-9f98-4f60-b282-74cd55e26f07&Category=News+Releases

Tagged with:

About author

Related Articles