Breaking News
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
January 19, 2019 - First-ever tailored reporting guidance to improve patient care and outcomes
January 19, 2019 - 4.6 percent of Massachusetts residents have opioid use disorder
January 19, 2019 - New study suggests vital exhaustion as risk factor for dementia
January 19, 2019 - New antibiotic discovery heralds breakthrough in the fight against drug-resistant bacteria
January 19, 2019 - Ural Federal University scientists synthesize a group of multi-purpose fluorophores
January 19, 2019 - Researchers identify new therapeutic target in the fight against chronic liver diseases
January 19, 2019 - Preparation, characterization of Soyasapogenol B loaded onto functionalized MWCNTs
January 19, 2019 - FDA Approves Ontruzant (trastuzumab-dttb), a Biosimilar to Herceptin
January 19, 2019 - Tobacco use linked with higher use of opioids and sedatives
January 19, 2019 - Study delves deeper into developmental dyslexia
January 19, 2019 - Anti-vaccination movement one of the top health threats in 2019 says WHO
January 19, 2019 - Newly developed risk score more effective at identifying type 1 diabetes
January 19, 2019 - Highly effective protocol to prepare cannabis samples for THC/CBD analysis
January 19, 2019 - Prinston Pharmaceutical Inc. Issues Voluntary Nationwide Recall of Irbesartan and Irbesartan HCTZ Tablets Due to Detection of a Trace Amount of Unexpected Impurity, N-Nitrosodiethylamine (NDEA) in the Products
January 19, 2019 - How does solid stress from brain tumors cause neuronal loss, neurologic dysfunction?
January 19, 2019 - $14.7 million partnership to supercharge vaccine development
January 19, 2019 - Ian Fotheringham receives Charles Tennant Memorial Lecture award
January 19, 2019 - Brain vital signs detect neurophysiological impairments in players with concussions
January 19, 2019 - Lack of job and poor housing conditions increased likelihood of people attending A&E
January 19, 2019 - Novel targeted drug delivery system improves conventional cancer treatments
January 19, 2019 - Rutgers study finds gene responsible for spread of prostate cancer
January 19, 2019 - Complications Higher Than Expected for Invasive Lung Tests
January 19, 2019 - 3-D printed implant promotes nerve cell growth to treat spinal cord injury
January 19, 2019 - Automated texts lead to improved outcomes after total knee or hip replacement surgery
January 19, 2019 - Poor cardiorespiratory fitness could increase risk of future heart attack, finds new study
January 19, 2019 - Drinking soft drinks while exercising in hot weather may increase risk of kidney disease
January 19, 2019 - Formlabs 3D prints anatomical models
January 19, 2019 - Heart-Healthy Living Also Wards Off Type 2 Diabetes
January 19, 2019 - Teaching Kids to Be Smart About Social Media (for Parents)
January 19, 2019 - Metabolite produced by gut microbiota from pomegranates reduces inflammatory bowel disease
January 19, 2019 - Researchers examine how spray from showers and toilets expose us to disease causing bacteria
January 19, 2019 - Behavioral experiments confirm that additional neurons improve brain function
January 19, 2019 - New study compares performance of real-time infectious disease forecasting models
January 19, 2019 - Obesity can be risk factor for developing renal cell carcinoma, confirms study
January 19, 2019 - New regulation designs on cigarette packs direct smokers’ attention to health warnings
January 19, 2019 - QIAGEN receives first companion diagnostic approval in Japan
January 19, 2019 - Study explores role of Dunning-Kruger effect in anti-vaccine attitudes
January 19, 2019 - Newly identified subset of immune cells may be key to fighting chronic inflammation
January 19, 2019 - New immune response regulators discovered
January 18, 2019 - Poor blood oxygenation during sleep predicts chance of heart-related death
January 18, 2019 - First international consensus on the diagnosis and management of fibromuscular dysplasia
January 18, 2019 - Rapid resistance gene sequencing technology can hasten identification of antibiotic-resistant bacteria
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
Study shows how machinery within immune system activates T cells to attack cancer

Study shows how machinery within immune system activates T cells to attack cancer

image_pdfDownload PDFimage_print

In just a few years, CAR T-cell and other adoptive T-cell therapies have emerged as among the most promising forms of cancer immunotherapy. But even as these agents prove themselves against several forms of leukemia and lymphoma – and, potentially, certain solid tumors – basic questions remain about how they work.

In a study published online today by the journal Immunity, scientists at Dana-Farber Cancer Institute, Harvard Medical School, Vanderbilt University and colleagues at other institutions show how machinery within immune system T cells responds to outside signals and activates the cells to attack cancerous, infected, or otherwise diseased cells. The findings, based on 15 years of painstaking work to recreate and assemble key components of the signal-processing mechanism, may help researchers fine-tune T-cell therapies to the requirements of individual patients, the study authors say.

T cells, whose surfaces are dotted with structures known as T-cell antigen receptors (TCRs), patrol the body for signs of infection or other disease. As they keep watch, their TCRs lock onto bits of proteins, called antigens, displayed on protein structures decorating the surface of other cells in the human body. The antigens reveal whether a cell is normal or diseased. If a cell is diseased, these “protein bit flags” are recognized as “foreign” and, the T cell switches on, or activates, to kill the diseased cell. In CAR T-cell therapy, billions of a patient’s T cells are removed and engineered to produce a structure called a chimeric antigen receptor, or CAR, that recognizes and latches on to a cancer cell. The resulting CAR T cells – essentially, high-performance versions of ordinary T cells – are then infused into the patient, where they take up the battle against tumor cells. Other TCR immunotherapies use genetically engineered T cells employing natural TCRs rather than chimeric receptors to target specific tumor cell antigens, also called neoantigens. Of note, in every healthy human being there are billions of distinct T cells each bearing unique TCRs and collectively capable of recognizing the myriad antigens that identify diseased cells.

“While CAR T cells, and T cells in general, are often effective in identifying and killing tumor cells, the precise mechanism by which the TCR works hasn’t been clear,” says the study’s lead author, Kristine Brazin, PhD, of Dana-Farber and Harvard Medical School. “How is the signal, which originates when the receptor links to a tumor antigen, transmitted through the cell membrane into the cell interior leading to cell activation?”

Answering that question involved a deep dive into the intricacies of the TCR. Far from being a rigid, seamless object, the receptor consists of eight distinct subunits which can move as the TCR operates, even dissociating one subunit pair from one another in a highly choreographed manner.

The most prominent features of the TCR are two long components, dubbed α and β, which are unique to each individual T cell and extend like pincers from the cell membrane to snare a particular cell antigen. Beside α and β, there are six other CD3 subunits common to all TCRs involved in signaling the T cell that the specific pincer has detected antigen. Scientists have had a clear picture of the portions of the TCR that rise from the surface of the cell but knew little about the portions that anchor the receptor in the T-cell membrane.

Brazin and her colleagues focused on the α region of the TCR. Using nuclear magnetic resonance technology, they determined the structure of the section of TCRα implanted in the membrane. Here a surprise was in store.

“The assumption had been that this region, known as the transmembrane segment, was always straight,” Brazin relates. “We found, however, that it is sometimes bent in an L-shaped formation.”

When configured like an L, the segment remains largely within the cell membrane. When, like a flexible straw, it straightens up, one end pokes into the cell interior.

“We wanted to understand why this segment is sometimes embedded so shallowly in the membrane – in an L shape,” Brazin relates. “We tried to make it straight.”

To do that, she and her colleagues made mutant versions of two protein residues that cling to the sides of the transmembrane segment. Mutating one of those residues, called Arg251, caused the segment to become slightly more embedded in the membrane. Mutating the other, Lys256, made it become much more deeply immersed. Other residues were found to regulate the interconversion between bent and straight forms, with the latter jutting further through the cell membrane.

It was on the surface of the cell, however, that this bending and unbending made the biggest difference. When the transmembrane segment is in full L-shape, it presses tightly against the CD3 subunits at its side. When it unbends a little – as when Arg 251 was mutated – that tightness relaxes a bit, and the T cell enters an early stage of activation. When it becomes more fully immersed in the cell membrane, the gap with CD3 widens further and the T cell enters a later stage of activation, ready to attack tumor cells.

“The looser the connection between the transmembrane segment and CD3 subunits, the higher the state of T cell activation,” Brazin remarks. “Our findings suggest that the mechanical force of the TCR’s interaction with antigens during T cell movement initiates T cell activation by weakening the connection between the transmembrane segment and CD3.”

The finding suggests that small-molecule drugs or genetic engineering approaches that widen or narrow the space between the transmembrane segment and CD3 could be used to tune the strength of T-cell attack on cancers or other non-malignant diseases, as needed for individual patients, the researchers say.

“This study represents a success of multidisciplinary basic science, explaining how bioforces involving antigen recognition initiate TCR signaling through the T-cell membrane with potential for future translational impact,” says the study’s senior author, Ellis Reinherz, MD, Chief of the Laboratory of Immunobiology and Professor of Medicine in the Department of Medical Oncology at Dana-Farber and Harvard Medical School. “A special scientist such as Kristine Brazin with tireless persistence, focus and intellect was required to solve this mystery over more than a decade of research effort,” he added.

Source:

https://www.dana-farber.org/newsroom/news-releases/2018/study-uncovers-key-parts-of-mechanism-for-activating-t-cells-to-fight-cancer-and-other-diseases/

Tagged with:

About author

Related Articles