Breaking News
November 18, 2018 - Pharmacist-Led Effort Cuts Inappropriate Rx in Older Adults
November 18, 2018 - Novel discovery could lead to new cancer, autoimmune disease therapy
November 18, 2018 - AHA and ADA launch new initiative to help people with type 2 diabetes reduce heart disease risk
November 18, 2018 - Balanced production of pro and anti-inflammatory cytokines at two years of age protects against malaria
November 18, 2018 - New pharmacological agent shows promise for prevention of heart rhythm disorders
November 18, 2018 - All That Social Media May Boost Loneliness, Not Banish It
November 18, 2018 - Scientists shine new light on link between obesity and cancer
November 18, 2018 - Risk factors for cardiovascular disease closely track with changes in diet patterns
November 18, 2018 - Biogen Scoops Sixth Prix Galien Award with UK Win for Life-Changing Rare Disease Medicine
November 18, 2018 - Detectable HIV-1 in treated human liver cells found to be inert
November 18, 2018 - Using light to control crucial step in embryonic development
November 18, 2018 - Unusual case of father-to-son HIV transmission reported
November 18, 2018 - FDA Approves Aemcolo (rifamycin) to Treat Travelers’ Diarrhea
November 18, 2018 - Poverty blamed on widening north-south gap in young adult deaths in England
November 18, 2018 - Progress in meningitis lags far behind other vaccine-preventable diseases, analysis shows
November 18, 2018 - Consensus Statement Issued on Management of Foot, Ankle Gout
November 18, 2018 - Fine particle air pollution is a public health emergency hiding in plain sight
November 18, 2018 - In-hospital mortality higher among patients with drug-resistant infections
November 17, 2018 - Research shines new, explanatory light on link between obesity and cancer
November 17, 2018 - FIND explores new diagnostic assays for confirmatory HCV diagnosis in community settings
November 17, 2018 - Tracking Preemies’ Head Size May Yield IQ Clues
November 17, 2018 - Scientists call for unified standards in 3-D genome and epigenetic data
November 17, 2018 - Lab Innovations 2018 has beaten all records by attracting 3,113 attendees
November 17, 2018 - New strategy to hinder emergence of antimicrobial-resistant pathogens
November 17, 2018 - Sexuality education before age 18 may reduce risk of sexual assault in college
November 17, 2018 - Reducing cellular proliferation could help deplete HIV reservoir and lead to a functional cure
November 17, 2018 - New model of FSHD could be useful to study effectiveness of experimental therapeutics
November 17, 2018 - FDA approves antibacterial drug to treat travelers’ diarrhea
November 17, 2018 - Lab Innovations 2018 confirmed as a major hit with visitors, exhibitors and speakers
November 17, 2018 - Largest parasitic worm genetic study hatches novel treatment possibilities
November 17, 2018 - UCLA biologists uncover how head injuries can lead to serious brain disorders
November 17, 2018 - Static and dynamic physical activities offer varying protection against heart disease
November 17, 2018 - Obesity significantly increases risk of Type 2 diabetes and coronary artery disease
November 17, 2018 - Researchers show how proteins interact in hypoxic conditions to facilitate mitochondrial fission
November 17, 2018 - People with rare cancers can benefit from genomic profiling, shows research
November 17, 2018 - NIH awards over $1.8 million to husband-and-wife doctors to test new breast cancer approach
November 17, 2018 - Four-in-one antibody used to fight flu shows promise in mice
November 17, 2018 - New approach allows pathogens to be starved by blocking important enzymes
November 17, 2018 - Higher body mass index could cause depression even without health problems
November 17, 2018 - Protein which plays role in sensing cell damage serves as new target to treat pulmonary hypertension
November 17, 2018 - FDA Approves Adcetris (brentuximab vedotin) in Combination with Chemotherapy for Adults with Previously Untreated Systemic Anaplastic Large Cell Lymphoma or Other CD30-Expressing Peripheral T-Cell Lymphomas
November 17, 2018 - ID specialist input improves outcomes for outpatient parenteral antimicrobial therapy
November 17, 2018 - UT Southwestern scientists selected to receive 2019 Edith and Peter O’Donnell Awards
November 17, 2018 - New clinical algorithm to help individuals manage type 2 diabetes when fasting during Ramadan
November 17, 2018 - Researchers identify LZTR1 as evolutionarily conserved component of RAS pathway
November 17, 2018 - Heart Disease Leading Cause of Death in Low-Income Counties
November 17, 2018 - Estrogen Levels Test: MedlinePlus Lab Test Information
November 17, 2018 - Research reveals link between immunity, diabetes
November 17, 2018 - Research shows how to achieve improved smoking cessation outcomes within California’s Medicaid population
November 17, 2018 - New study finds less understanding and implementation of patient engagement
November 17, 2018 - New shoe insole technology could help diabetic ulcers heal better while walking
November 17, 2018 - New method to extend cell division and immortalization of avian-derived cells
November 17, 2018 - Australian Academy of Science urges parents to vaccinate children against meningococcal disease
November 17, 2018 - Hot water treatment may help improve inflammation and metabolism in sedentary people
November 17, 2018 - Researchers produce 3D chemical maps of small biological samples
November 17, 2018 - Must Blood Pressure Rise Wth Age? Remote Tribes Hold Clues
November 17, 2018 - Noonan Syndrome
November 17, 2018 - Interventions to delay and prevent type 2 diabetes are underused, researchers say
November 17, 2018 - Hackathon prize winner seeks to remotely monitor patient skin conditions
November 17, 2018 - Research team identifies Ashkenazi Jewish founder mutation for Leigh syndrome
November 17, 2018 - Gene editing could be used to halt kidney disease in patients with Joubert syndrome
November 17, 2018 - Study uncovers link between gut disruption and aging
November 17, 2018 - Teens more likely to pick up smoking after exposure from friends and family
November 17, 2018 - Nicoya designate the Institute for Stem Cell Biology and Regenerative Medicine as the OpenSPR Centre of Excellence
November 17, 2018 - new horizon in dental, oral and craniofacial research
November 17, 2018 - How does poor air quality affect your health?
November 17, 2018 - New device can regulate children’s blood glucose more like natural pancreas
November 17, 2018 - Game-Changers in Western Blotting and Protein Analysis
November 17, 2018 - FDA announces new actions to limit sale of e-cigarettes to youth
November 17, 2018 - Warmer winter temperatures related to higher crime rates
November 17, 2018 - MCO places increasing emphasis on helping people find and access healthy food
November 17, 2018 - Group of students aim to improve malaria diagnosis using old smartphones
November 17, 2018 - Transplantation of feces may protect preterm children from deadly bowel disease
November 17, 2018 - Researchers explore whether low-gluten diets can be recommended for people without allergies
November 17, 2018 - New and better marker for assessing patients after cardiac arrest
November 17, 2018 - For 7-year-old with failing bone marrow, a life-saving transplant | News Center
November 17, 2018 - New first-line treatment for peripheral T-cell lymphoma approved by FDA
November 17, 2018 - Artificial intelligence could be valuable tool to help young victims disclose traumatic testimony
November 17, 2018 - Breakthrough in the treatment of Restless Legs Syndrome
November 16, 2018 - FDA Approves Keytruda (pembrolizumab) for the Treatment of Patients with Hepatocellular Carcinoma (HCC) Who Have Been Previously Treated with Sorafenib
Russian physicists develop method for narrowing emission spectrum of diode laser

Russian physicists develop method for narrowing emission spectrum of diode laser

image_pdfDownload PDFimage_print

Russian physicists have developed a method for drastically narrowing the emission spectrum of an ordinary diode laser, like that in a laser pointer. This makes their device a useful replacement for the more complex and expensive single-frequency lasers, enabling the creation of compact chemical analyzers that can fit into a smartphone, cheap lidars for self-driving cars, as well as security and structural health monitoring systems on bridges, gas pipelines, and elsewhere. The study came out Oct. 26 in Nature Photonics and was co-authored by researchers from the Russian Quantum Center (RQC), the Moscow Institute of Physics and Technology (MIPT), Lomonosov Moscow State University (MSU), and Samsung R&D Institute Russia.

“This work has two main results,” said the paper’s lead author RQC Scientific Director Michael Gorodetsky, who is also an MSU professor. “First, it serves to show that you can make a cheap narrow-linewidth laser, which would be single-frequency yet highly efficient and compact. Secondly, the same system with virtually no modifications can be used for generating optical frequency combs. It can thus be the core component of a spectroscopic chemical analyzer.”

The applications of lasers are many. Among them are laser eye surgery, laser sights, and fiber optic communication. One of the key uses of lasers is spectroscopy, which measures the precise chemical composition of virtually anything.

The so-called optical frequency comb technique underlies laser-based spectroscopy, pioneered by the 2005 Nobel laureates in physics, John Hall from the U.S. and Theodor Hänsch from Germany. The two developed a laser device that generates optical radiation at a million extremely stable frequencies. The radiation in the gain medium of such lasers “bounces” between mirrors and is ultimately emitted as a continuous train of brief pulses of light of a million different colors. Each pulse lasts mere femtoseconds — millionths of a billionth of a second. The emission spectrum of such a laser consists of a great number of evenly spaced narrow spectral lines, the “teeth” of the optical comb.

An optical laser frequency comb can be used as a “ruler” to accurately measure light frequency and therefore make precise spectrometric measurements. Other applications include satellite navigation, accurate time data transfer, and the radial velocity method for detecting extrasolar planets.

It turned out that there is an easier way to generate frequency combs, which relies on optical microresonators. These are ring- or disk-shaped transparent components. By virtue of their material’s nonlinearity, they transform pump laser radiation into a frequency comb, also referred to as a microcomb.

“Optical microresonators with whispering gallery modes were first proposed at MSU’s Faculty of Physics in 1989. They offer a unique combination of submillimeter size and an immensely high quality factor,” explained study co-author, MIPT doctoral student Nikolay Pavlov. “Microresonators open the way toward generating optical combs in a compact space and without using up much energy.”

Not any laser can be used to pump optical frequency combs in a microresonator. The laser needs to be both powerful and monochromatic. The latter means that the light it emits has to fall into a very narrow frequency band. The most common and cheap lasers nowadays are diode lasers. Although they are compact and convenient, in spectroscopy they fall short of more complex and expensive devices. The reason is that diode lasers are not sufficiently monochromatic: The radiation they emit is “smeared” across a 10-nanometer band.

“To narrow down the linewidth of a diode laser, it is usually stabilized using an external resonator or a diffraction grating,” explained Gorodetsky. “This reduces the linewidth, but the cost is a major decrease in power, and the device is no longer cheap, nor is it compact.”

The researchers found a simple and elegant solution to the problem. To make laser light more monochromatic, they used the very microresonators that generate optical frequency combs. That way they managed to retain nearly the same laser power and size — the microresonator is mere millimeters across — while also increasing monochromaticity by a factor of almost 1 billion. That is, the transmission band is narrowed down to attometers — billionths of a billionth of a meter — and an optical frequency comb is generated, if required.

“As of now, compact and inexpensive diode lasers are available for almost the entire optical spectrum,” added Pavlov. “However, their natural linewidth and stability are insufficient for many prospective tasks. In this paper, we show that it is possible to effectively narrow down the wide spectrum of powerful multifrequency diode lasers, at almost no cost to power. The technique we employ involves using a microresonator as an external resonator to lock the laser diode frequency. In this system, the microresonator can both narrow the linewidth and generate the optical frequency comb.”

The proposed design has many possible applications. One of them is in telecommunications, wh ere it would considerably improve the bandwidth of fiber optic networks by increasing the number of channels. Another sphere that would benefit is the design of sensors, such as reflectometers used as the basis of security and monitoring systems. For example, if a fiber optic cable runs along a bridge or an oil pipeline, the light in the cable will respond to the slightest disturbances or variations in the geometry of the object, pinpointing potential problems.

Single-frequency lasers can be used in lidars, or optical radars, which are installed on self-driving cars, among other uses. Finally, the technology enables highly precise analyzers, such as those measuring the composition of air or running medical diagnostics, that could be integrated into smartphones or watches.

“The demand for such lasers would be really high,” said Gorodetsky.

The physicist also pointed out that all authors of the paper are Russian researchers, which is a fairly rare occasion for publications in such a high-ranking journal.

Source:

https://mipt.ru/english/news/physicists_devise_a_way_to_turn_cheap_diode_lasers_into_single_frequency_ones_suitable_for_portable_chemical_analyzers_and_other_applications

Tagged with:

About author

Related Articles