Breaking News
March 25, 2019 - Want healthier eating habits? Start with a workout
March 25, 2019 - New approach to prescribing antibiotics could curb resistance
March 24, 2019 - Theravance Biopharma Announces First Patient Dosed in Phase 2b/3 Study of TD-1473 in Patients with Ulcerative Colitis
March 24, 2019 - Prenatal DHA prevents blood-pressure increase from obesity during childhood
March 24, 2019 - Combined immunosuppression may be effective, safe in treating older patients with Crohn’s disease
March 24, 2019 - GSK sells health drinks arm, buys US cancer treatment firm
March 24, 2019 - Bacteria and innate immune factors in birth canal, cervix may be key to predicting preterm births
March 24, 2019 - IgG antibodies play unexpected role in atherosclerosis
March 24, 2019 - Sounds and vibrations are quite similar for the brain, finds new study
March 24, 2019 - Practices for Reducing COPD Hospital Readmissions Explored
March 24, 2019 - Could an eye doctor diagnose Alzheimer’s before you have symptoms?
March 24, 2019 - Enzyme inhibitor stops inflammation and neurodevelopmental disorders in mouse models
March 24, 2019 - Walk, Dance, Clean: Even a Little Activity Helps You Live Longer
March 24, 2019 - Americans used less eye care in 2014 versus 2008
March 24, 2019 - Study finds link between depression in 20s linked to memory loss in 50s
March 24, 2019 - New tool helps physiotherapy students to master complex fine motor skills
March 24, 2019 - The AMR Centre secures £2.3m funding boost
March 24, 2019 - Study examines effects of taking ondansetron during first trimester of pregnancy
March 24, 2019 - Researchers identify a more effective treatment for cancer
March 24, 2019 - Open-source solution for multiparametric optical mapping of the heart’s electrical activity
March 24, 2019 - New nanotechnology approach shows promise in treating triple negative breast cancer
March 24, 2019 - Trevena Announces Publication of APOLLO-1 Results in The Journal of Pain Research Highlighting Oliceridine’s Potential for Management of Moderate-to-Severe Acute Pain
March 24, 2019 - Maternal deaths following C-section 50 times higher in Africa compared to high-income countries
March 24, 2019 - Apple watch could detect irregular heart beat says study
March 24, 2019 - Queen Mary University of London’s BCI boosts radionuclide imaging capabilities with MILabs VECTor technology
March 24, 2019 - Girls should be encouraged to gain more ball skills, shows study
March 24, 2019 - Acute doses of synthetic cannabinoid can impair critical thinking and memory
March 24, 2019 - Presence of bacteria in urine does not always point to infection, shows study
March 24, 2019 - Scientists identify a new role for nerve-supporting cells
March 24, 2019 - Hidden differences between pathology of CTE and Alzheimer’s disease discovered
March 24, 2019 - Knowing causative genes of osteoporosis may open door to more effective treatments
March 24, 2019 - Toilet-seat based cardiovascular monitoring system getting ready to begin commercialization
March 24, 2019 - New model for intensive care identifies factors that send ill patients to ICU
March 24, 2019 - Recommendations Issued for HSCT in Multiple Myeloma
March 24, 2019 - Deep brain stimulation provides sustained relief for severe depression
March 24, 2019 - “Statistical significance” may soon be a thing of past?
March 24, 2019 - Researchers track effects of epigenetic marks carried by sperm chromosomes
March 24, 2019 - AHA News: Family Adopts Three Children With Three Different Heart Conditions
March 24, 2019 - Research into opioid painkillers could provide clues for safer drug development
March 23, 2019 - Lung cancer survivor recounts her lifetime struggles
March 23, 2019 - Radial and femoral approach for PCI achieve similar results in terms of survival
March 23, 2019 - Study sheds light on the optimal timing of coronary angiography in NSTEMI patients
March 23, 2019 - Excess hormones could cause a condition that can lead to blindness in women, study finds
March 23, 2019 - Dramatic shifts in first-time opioid prescriptions bring hope, concern
March 23, 2019 - Antidepressant drugs may not work when neurons are out of shape
March 23, 2019 - TTUHSC El Paso to establish endowed chair in neurology through a major grant
March 23, 2019 - New device approved by FDA for treating patients with moderate-to-severe heart failure
March 23, 2019 - People with peripheral artery disease have lower Omega-3 Index, shows research
March 23, 2019 - Trigger warnings have minimal impact on how people respond to content, shows research
March 23, 2019 - Gilead Announces Data From Two Studies Supporting Further Development of GS-6207, a Novel, Investigational HIV-1 Capsid Inhibitor as a Component of Future Long-Acting HIV Therapies
March 23, 2019 - Selfish genetic elements amplify inflammation and age-related diseases
March 23, 2019 - Study provides new understanding of how the brain recovers from damage caused by stroke
March 23, 2019 - CRISPR/Cas libraries could revolutionize drug discovery
March 23, 2019 - Allergic reaction during pregnancy may alter sexual-development in offspring’s brain
March 23, 2019 - Seeing through a robot’s eyes helps those with profound motor impairments
March 23, 2019 - Recent research shows that ease of breastfeeding after C-section differs culturally
March 23, 2019 - Newly discovered parameters offer more control over efficient release of drugs
March 23, 2019 - ‘De-tabooing’ of abortion- Women would like more support from health care community
March 23, 2019 - Anti-TB drugs can increase susceptibility to Mtb reinfection
March 23, 2019 - New survey indicates need of attention to neglected tropical diseases
March 23, 2019 - Innovative in vitro method to develop easy-to-swallow medicine for children and older people
March 23, 2019 - Sugary drinks could raise risk of early deaths finds study
March 23, 2019 - Lian wins ENGINE grant for stem-cell-based therapy to treat Type 1 diabetes
March 23, 2019 - Overall, Physicians Are Happy and Enjoy Their Lives
March 23, 2019 - Researchers discover how blood vessels protect the brain during inflammation
March 23, 2019 - CDC study shows modest improvement in optimal hospital breastfeeding policy
March 23, 2019 - Family-based prevention program to reduce alcohol use among older teens
March 23, 2019 - Remote monitoring of implanted defibrillators in heart failure patients prevents hospitalizations
March 23, 2019 - Appropriate doffing of personal protective equipment may reduce healthcare worker contamination
March 23, 2019 - Window screens can suppress mosquito populations, reduce malaria in Tanzania
March 23, 2019 - Researchers discover new biomarker for postoperative liver dysfunction
March 23, 2019 - Pregnancy history may be linked to cognitive function in older women, finds study
March 23, 2019 - Study shows ticagrelor is equally safe and effective as clopidogrel after heart attack
March 23, 2019 - FDA Approves First Drug for Postpartum Depression, Zulresso (brexanolone)
March 23, 2019 - New guidelines outline new treatment management for psoriasis
March 23, 2019 - Thermally abused cooking oil may promote progression of breast cancer
March 23, 2019 - High-fructose corn syrup fuels growth of colon tumors in mice
March 23, 2019 - Partnership aims at establishing best practices to promote diversity in clinical trials
March 23, 2019 - New study examines presence of microbes in tap water from residences, office buildings
March 23, 2019 - Early life trauma may affect brain structure, contribute to major depressive disorder
Scientists pinpoint pathway that impacts features of autism

Scientists pinpoint pathway that impacts features of autism

image_pdfDownload PDFimage_print
Randy Blakely, Ph.D., senior author, executive director of FAU’s Brain Institute, and a professor of biomedical science in FAU’s Schmidt College of Medicine, and graduate student and co-author Meagan Quinlan. Credit: Florida Atlantic University

A team of scientists at Florida Atlantic University has uncovered a brain-signaling pathway that can be pharmacologically manipulated in genetically engineered mice to reverse an autism-related pathway. Using an investigational drug targeting this pathway, the researchers normalized the disrupted physiology and behavior of these mice. Moreover, effects were seen in adult mice, suggesting a possible route to medication development for adults with autism spectrum disorder (ASD).

Currently, there are no FDA-approved medications that improve the core symptoms of ASD. Findings from this study, published in the Proceedings of the National Academy of Sciences (PNAS), suggest a novel approach to treating this disorder in some people by targeting an enzyme normally associated with stress and inflammation.

The study was based on decades of research by the team on serotonin, a mood-regulating molecule in the brain that regulates many brain synapses—the gaps between nerve cells where signals are sent and received. The supply of serotonin is tightly regulated by a protein called the serotonin transporter (SERT), which sweeps away serotonin from synapses to limit its action. Shifts in the transporter’s activity can have significant consequences on the ability of serotonin to act in the brain.

While evidence shows that changes in SERT expression and function may underlie risk for neuropsychiatric disorders, exactly how SERTs are normally regulated in the brain and whether this regulation can be a target for improved medications, and for what disorders, has been unclear.

Randy Blakely, Ph.D., senior author, executive director of FAU’s Brain Institute, and a professor of biomedical science in FAU’s Schmidt College of Medicine, first identified and cloned the human SERT gene about 25 years ago and established the ability of SERT to be blocked by the major antidepressant medications such as Prozac, Zoloft and Lexapro. Recognizing the limits of these medications, Blakely hypothesized that resetting the normal regulation of SERT, rather than eliminating its function altogether, might be a more subtle and effective way to modify brain serotonin signaling.

“We suspected that normally as serotonin signaling changes, neurons turn up or down the activity of this transporter keeping serotonin levels finely balanced,” said Blakely. “We generated evidence for this idea using cultured cells that expressed SERT, but what these observations meant for the brain or brain disorders was unclear.”

In 2005, Blakely and collaborators at Vanderbilt University reported multiple mutations in SERT in children with ASD. Remarkably, all of these mutations made the transporter hyperactive all of the time, like an out-of-control vacuum cleaner sucking the air out of a room.

“Our years of studying SERT gave us a clue as to how to tone down SERT hyperactivity without eliminating the protein’s normal function,” said Blakely.

A few years before their mutation discovery, Blakely’s team identified an enzyme, p38α MAPK, as a key SERT regulator. This enzyme is well known to be a contributor to inflammatory responses, but work from multiple laboratories suggests that the enzyme plays a role in the normal control of serotonin signaling. Importantly, changes in molecules linked to p38α MAPK signaling have been reported in brain samples from ASD subjects. Focusing on the most common of the SERT mutations, Ala56, the group set out to test their theory that SERT was being shoved into “high gear” by the enzyme.

With genetic engineering approaches, the team introduced the Ala56 mutation into the genome of a mouse, where brain biochemistry, physiology and behavior could carefully be examined. As predicted, SERT was found to be modified excessively by p38α MAPK.

Moreover, they found changes in the behavior of the mice that were reminiscent of some features of ASD. These changes included excessive repetitive behaviors, deficits in communication, and diminished social interactions. In addition, they found elevated serotonin levels in the blood of the mice, a change seen in 25-30 percent of subjects with ASD—the first time the trait had been reproduced in animals generated to mimic ASD.

“The studies primarily told us that Ala56 wasn’t a benign mutation and possibly that the mice might provide a testbed for developing novel serotoninergic medications,” said Blakely.

To test this idea, Blakely needed a drug that could attack brain p38α MAPK potently and specifically. Biochemist D. Martin Watterson, Ph.D., at the Department of Pharmacology at Northwestern University Feinberg School of Medicine and a co-author, came up with the needed tool known as MW150.

“Marty’s drug was really key to our efforts, as it gets into the brain very well, has good selectivity for p38α MAPK, and previously had been demonstrated to be safe to use in animals,” said Matthew J. Robson, Ph.D., first author and an assistant professor in the James L. Winkle College of Pharmacy at the University of Cincinnati. “Remarkably, giving the drug once a day for a week reversed many of the changes induced by the SERT Ala56 mutation.”

Encouraged by these findings, yet knowing that drugs can sometimes act on other targets, Blakely’s team sought another approach to confirm that the drug’s effects were due to blockade of brain p38α MAPK. They decided to eliminate the enzyme only from brain serotonin neurons using a genetic approach called “conditional gene deletion.” The effects with animals lacking a functional p38α MAPK gene mirrored their findings with MW150.

“Although serotonin and SERT are active in the brain throughout development, one key finding of our study is that the effects we saw with MW150 were found in adult mice,” said Robson. “When people think about treating ASD, they generally think about medications for children. While we do not know if our strategy will lead to new medications, treatments that can help adults with ASD is clearly a huge unmet need.”

The diagnostic features of ASD are behavioral in nature, yet medical comorbidities are common, including bowel problems such as constipation. In 2016, Blakely and a team of researchers at Columbia University led by Kara Margolis, M.D. and Michael Gershon, M.D., co-authors, demonstrated that in addition to behavioral problems, the SERT Ala56 mice showed poor development of the nerve cells that line the colon and support gut contractions. Astonishingly, Blakely’s study demonstrated that MW150 also could treat physiological changes linked to gut function in the mice.

“Even though the first connections between serotonin and ASD were made more than 50 years ago, how we might tap into these observations for potential treatments hasn’t been clear,” said Blakely. “We think our study suggests a new direction for medication development, particularly if we can identify those patients where changes in brain serotonin make a difference.”

The SERT Ala56 mutation is relatively rare and found in only about 1 percent of the U.S. population. Even though Blakely’s human studies found the DNA change to be associated with traits of ASD, other individuals in the study who carried the variant did not have ASD.

“We don’t think the variant is a cause for ASD in many people; only in those where other genetic or environmental changes have occurred. The bigger message is that serotonin’s role in brain disorders likely goes far beyond depression,” said Blakely.

Blakely suggests the use of brain-imaging techniques that can scan for changes in SERT levels, or changes in serotonin signaling, could be a possible aid in identifying the right patients for treatment.

Recent estimates indicate a prevalence of ASD in the U.S. of 1 in 59 children with a well-established 4:1 male predominance. Individual costs for care are estimated at about $2.4 million, yielding a societal burden that is expected to exceed $400 billion by 2025.

“It’s been a long road with our research efforts,” said Blakely. “Although our studies so far have used mice, and there is still much to do to understand the full significance of the work, I am glad we haven’t veered from the path. I’m hopeful that our work will prove meaningful beyond the laboratory.”


Explore further:
Novel mouse model for autism yields clues to a 50-year-old mystery

More information:
Matthew J. Robson el al., “p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse,” PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1809137115

Journal reference:
Proceedings of the National Academy of Sciences

Provided by:
Florida Atlantic University

Tagged with:

About author

Related Articles