Breaking News
February 20, 2019 - New screening tool more likely to identify sexual and labor exploitation of youth
February 20, 2019 - Newly licensed nurses work for long hours, also have a second paid job
February 20, 2019 - Physicists identify simple mechanism used by deadly bacteria to fend off antibiotics
February 20, 2019 - FDA Grants Priority Review to Genentech’s Personalized Medicine Entrectinib
February 20, 2019 - Exposure to chemicals before and after birth is associated with a decrease in lung function
February 20, 2019 - Neuroscientists reveal that simple brain region can guide complex feats of mental activity
February 20, 2019 - Study finds new link between food allergies and multiple sclerosis
February 20, 2019 - First gene therapy operation for macular degeneration is a success
February 20, 2019 - Physicians graduated outside the U.S. offer better care for Medicare patients with complex needs
February 20, 2019 - FDA Approves Keytruda (pembrolizumab) for the Adjuvant Treatment of Patients with Melanoma with Involvement of Lymph Node(s) Following Complete Resection
February 20, 2019 - Study identifies brain cells that modulate behavioral response to threats
February 20, 2019 - Researchers take closer look at how viruses bind cells and cause infection
February 20, 2019 - Newly developed gene therapy helps decelerate aging process
February 20, 2019 - Study suggests new treatment strategy for deadly brain cancer
February 20, 2019 - Scientists develop unique hybrid implant that imitates bone structure
February 20, 2019 - Push-ups can be tailored to meet specific needs of individuals
February 20, 2019 - CVD Does Not Modify Depression-Mortality Link in Elderly
February 20, 2019 - Electrical activity early in fruit flies’ brain development could shed light on how neurons wire the brain
February 20, 2019 - Machine learning technique helps predict which asthma patients respond to corticosteroid therapy
February 20, 2019 - Self-reported sleep duration is a useful tool to measure sleep in children, study suggests
February 20, 2019 - T-cells play key role in how the body fights follicular lymphoma
February 20, 2019 - Study shows how 3D organization of genetic material helps perpetuate the species
February 20, 2019 - Researchers engineer stem cell with ‘suicide genes’ to induce cell death in all but beta cells
February 20, 2019 - Study reveals major sex differences in management of cardiovascular risk factors among U.S. adults
February 20, 2019 - Health Tip: Get Your Child to School on Time
February 20, 2019 - Shortcut strategy for screening compounds with clinical potentials for drug development
February 20, 2019 - Common acid reflux drugs tied to elevated risk for kidney disease
February 20, 2019 - Microbiome could be culprit when good drugs do harm
February 20, 2019 - Prenatal exposure to forest fires causes stunted growth in children
February 20, 2019 - Gene therapy restores hearing in mice with congenital genetic deafness
February 20, 2019 - First molecular test predicts treatment response for kidney cancer
February 20, 2019 - New method for improved visualization of single-cell RNA- sequencing data
February 20, 2019 - Researchers capture altered brain activity patterns of Parkinson’s in mice
February 20, 2019 - A possible blood test for detecting Alzheimer’s disease before symptoms show
February 20, 2019 - Primary care physicians associated with longevity, new research finds
February 19, 2019 - New study identifies many key lessons to establish sanctioned safe consumption sites
February 19, 2019 - Single CRISPR treatment can safely and stably correct genetic disease
February 19, 2019 - Multinational initiative to study familial primary distal renal tubular acidosis
February 19, 2019 - Breakthrough study highlights the promise of cell therapies for muscular dystrophy
February 19, 2019 - Subsymptom Threshold Exercise Speeds Concussion Recovery
February 19, 2019 - Midline venous catheters – infants: MedlinePlus Medical Encyclopedia
February 19, 2019 - Searching for side effects
February 19, 2019 - Humanity is all right, probably, although human extinction remains quite possible, researcher says
February 19, 2019 - Having Anesthesia Once as a Baby Does Not Cause Learning Disabilities, New Research Shows
February 19, 2019 - Anti-cancer immunotherapy could be used to fight HIV
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - Brain imaging indicates potential success of drug therapy in depressive patients
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - Specialized lung cells appear in the developing fetus much earlier than previously thought
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
February 19, 2019 - Early marker of cardiac damage triggered by cancer treatment identified
February 19, 2019 - Antidepressant drug could save people from deadly sepsis, research suggests
February 19, 2019 - CRISPR technology creates pluripotent stem cells that are ‘invisible’ to the immune system
February 19, 2019 - New study establishes how stress favors breast cancer growth and spread
February 19, 2019 - Midlife Systemic Inflammation Linked to Later Cognitive Decline
February 19, 2019 - Therapy derived from parasitic worms downregulates proinflammatory pathways
February 19, 2019 - Antimicrobial reusable coffee cups are less likely to become contaminated with bacteria, study shows
February 19, 2019 - Harnessing the evolutionary games played by cancer cells to advance therapies
February 19, 2019 - AHA News: Heart Transplant Survivor Gets Wedding Proposal at Finish Line
February 19, 2019 - HIV hidden in patients’ cells can now be accurately measured
February 19, 2019 - Research finds reasons for sudden cardiac death in patients with stable ischemic disease
February 19, 2019 - New protocol could help physicians to rule out bacterial infections in infants
February 19, 2019 - Women experiencing miscarriage should be offered treatment choices
To better treat COPD, scientists look to tailored approaches for deadly lung disease

To better treat COPD, scientists look to tailored approaches for deadly lung disease

image_pdfDownload PDFimage_print
A normal mouse lung (left) and one with abnormal activation of hedgehog. Credit: Tien Peng

Valerie Chang kept waking up breathless in the middle of the night. As a regular swimmer and non-smoker, she figured it was a fluke, a remnant of her childhood asthma, perhaps.

But after a lung test, doctors told her that she had chronic obstructive pulmonary disease (COPD); her lung function was only 30 percent and she had done irreversible damage to her lungs. Unfortunately, they said, there was nothing they could do to improve her lung function, and she would likely need a transplant in a year.

Eighteen years later, Chang’s original lungs are still intact and her emphysema and asthma are under control, but she’s had to go through dozens of medications and multiple doctors to get there. As a non-smoker, Chang doesn’t fit the typical profile of someone with COPD, but the revolving door of drugs – and her frustration around it – are not atypical.

“Most of the treatments for COPD are just symptomatic, and that’s really not that comforting – especially if you’re 42, which I was when I was diagnosed, and you have young children and you are wondering if you’ll be around to watch them grow up,” says Chang, who is now being treated at UC San Francisco by professor of medicine Steven Lazarus, MD.

COPD is the third-leading cause of death in the world. And though treatments exist to improve the symptoms of COPD, as in the case of Chang, there is no way to slow the progression of the condition or cure it.

The main difficulty in finding a cure is COPD’s heterogeneous nature – the disease can be thought of as an umbrella term for various symptoms, the most prominent being inflammation of the small airways (bronchitis) and destruction of the air sacs, or alveoli, in the lungs (emphysema). There are also varying genetic and environmental risk factors for COPD, as well as differences in disease exacerbation and progression.

To develop novel therapies to treat specific subtypes of COPD, and potentially even to reverse some of the symptoms, scientists at UCSF are taking a precision medicine approach to the disease. They are also searching for improved biomarkers that can match treatments to the patients who will benefit from them the most.

Fighting Inflammation

The first intervention for COPD is typically to get patients to stop smoking cigarettes, since that is the primary cause of the condition in the United States, where 16 million people have been diagnosed with the disease. Chronic exposure to cigarette smoke can trigger inflammation and scarring in the airways. Ordinarily, healthy organs absorb scar tissue over time and return to normal, but in COPD the damage to the airways remains and lung function can continue to decline even after people quit smoking.

Regardless of the root cause, the current treatment for airway inflammation is steroid inhalers like the ones used for asthma, but these drugs often don’t work in COPD. Stephen Nishimura, MD, Chief of Pathology at UCSF, says that one reason for this may be that the traditional pathways involved in inflammation don’t hold true for COPD. “We need to study and target other inflammatory pathways that are specific to COPD and could possibly have a greater therapeutic benefit,” he says.

In his search for the source of inflammation, Nishimura turned to TGF-beta, a protein that is critical for immune function and the generation of scar tissue. When TGF-beta is activated in a cell it leads to the production of the inflammatory protein IL-17. Working in mice, Nishimura developed an antibody that was able to prevent the activation of TGF-beta specifically in the lung. By suppressing TGF-beta activation, the anti-body successfully blocked IL-17 inflammation, which in turn prevented scar tissue formation.

Nishimura is now working with a pharmaceutical company to bring the antibody to patients. However, as not all COPD patients suffer from airway scarring, an important next step is to identify which patients have the symptom and are therefore most likely to benefit from the therapy.

“We have an idea of how this pathway might be involved in airway disease in humans, but we lack a critical piece of puzzle: how to identify patients who should have the treatment,” Nishimura says. “We need to look for biomarkers that predict which patients are going to have this type of inflammatory response.”

Searching the Microbiome

One biomarker that could help to indicate what’s happening in the lung and categorize the different subtypes of COPD is the lung’s microbiome.

“A lot of our work focuses on trying to identify subgroups of patients with different responses in the lung. If we can find subsets of patients that are going to be more responsive to therapies, doctors can tailor their treatment options accordingly,” said Stephanie Christenson, MD, an assistant professor of medicine at UCSF.

Christenson is particularly interested in exacerbations of COPD, a worsening of symptoms that is typically treated with steroids or antibiotics. However, doctors often don’t know why an exacerbation occurred – whether it was due to a viral or bacterial infection, pollution, or an unknown cause. The root of an exacerbation makes a big difference in how you treat it; you don’t want to give a patient antibiotics if they have a viral infection.

Changes to the microbiome during an exacerbation and, perhaps even more importantly, how the lung responds may hold the answer. Christenson is analyzing phlegm samples that were collected from patients before, during and after an exacerbation to see if she can subgroup them based on how their microbiome changed. She can track gene expression in the lung to see changes in inflammation, as well as the presence of a virus or bacterial infection.

With this information, she’s been able to identify different types of inflammation based on immune responses in the lung, which can then be matched to treatments. For example, type 2 inflammation is an asthma-like inflammatory response that can be managed with inhaled steroids, while inflammation from IL-17 (one of the proteins affected by Nishimura’s antibody) is thought of as a response to bacteria and doesn’t respond as well to inhaled steroids.

“A lot of times we just throw everything at these patients – we’ll try giving patients both an antibiotic and a steroid – but those things come with risks,” Christenson says. “If we can identify biomarkers that tell us whether a patient has a change in their gene expression that would be solved by giving them a steroid, then those are the patients we should give steroids to. On the other hand, if we can clearly identify a bacterial infection, we should be treating it with antibiotics.”

Looking to the Genes

Another way to distinguish between subclasses of COPD is a patient’s genes. UCSF assistant professor of medicine Tien Peng, MD, is using genetic information about COPD to guide the development of novel treatments for the disease.

“There are a lot of smokers, but only a relatively small subset of them develop COPD with emphysema, so there must be some underlying genetic predisposition for those people,” Peng says.

Over the last decade, genome-wide studies have identified several changes within different parts of the genome that might predict who is at risk for emphysema. One of the cellular pathways that might be genetically modified is called “hedgehog.” The hedgehog pathway plays an important role in how stem cells function in the lung. It is typically activated in cells around the airways of the lung but not lower down in the air sacs, or alveoli.

In a recent article in the Journal of Clinical Investigation, Peng reports that abnormal activation of hedgehog in cells in the alveoli causes emphysema in mice by impeding the ability of lung stem cells to regenerate damaged alveoli.

“Stem cells are critical to maintaining the structure of an organ. We show that activation of hedgehog results in fewer stem cells because the cells won’t renew, and that may explain the loss of air sac structures in emphysema,” Peng says. “This is a new way of thinking about emphysema as a disease of aberrant regeneration or loss of stem cell capacity, rather than simply as a disease of inflammation.”

Peng is currently exploring various ways to modify hedgehog signaling in the lung to improve stem cell function, with the goal of developing a new therapy for COPD patients with emphysema.

No One-Size-Fits-All

In a heterogeneous condition such as COPD, scientists’ pursuit of specialized research to advance the field as a whole is key, since one drug is not going to treat every subtype of the disorder, and attempting a blanket clinical trial would surely result in failure.

“A lot of people are working on COPD from all different angles,” says Nishimura. “Our hope is that the other arms are keeping up progress so that when a drug is ready, we can identify and deliver it to the patients who would benefit the most.”

Explore further:
Inhaled steroids may increase risk of nontuberculous mycobacteria lung infections

More information:
Chaoqun Wang et al. Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype, Journal of Clinical Investigation (2018). DOI: 10.1172/JCI99435

Journal reference:
Journal of Clinical Investigation

Provided by:
University of California, San Francisco

Tagged with:

About author

Related Articles